書籍名 |
サイトカイン・ケモカインのすべて 基礎から最新情報まで 第三版改訂新版 |
出版社 |
日本医学館
|
発行日 |
2004-08-09 |
著者 |
|
ISBN |
4890445625 |
ページ数 |
705 |
版刷巻号 |
第1版第1刷 |
分野 |
|
閲覧制限 |
未契約 |
本書は、学生から第一線の研究者までを読者対象にして、基礎から最新情報までを含むサイトカイン・ケモカインの現況をなるべくわかりやすく、なるべく全分野にわたって解説したものである。第三版改訂版。
目次
- 表紙
- 執筆者一覧
- 第三版改訂新版に寄せて
- 第二版序文
- 第一版序文
- 目次
- オーバービュー
- 1. サイトカインのオーバービュー
- ・ サイトカイン研究の歴史
- ・ 主なサイトカイン
- ・ サイトカイン全般に共通する性状
- ・ サイトカイン活性に影響を及ぼす諸因子
- ・ サイトカインレセプター
- ・ 正および負のサイトカインシグナル伝達機構
- ・ サイトカイン, 内分泌ホルモン, 神経ペプチドの相互作用
- ・ Th1細胞とTh2細胞
- ・ 生体内でのサイトカインの主な役割
- 2. ケモカイン研究の歴史と現状・将来
- ・ケモカインの炎症・免疫反応時における特異的白血球組織浸潤制御の確立の歴史
- ・ ケモカインによる免疫制御
- ・ ケモカインの新しい生理活性
- ・ ケモカイン受容体アンタゴニスト
- 新しいサイトカイン
- 3. IL-19, IL-20, IL-22, IL-24, IL-26 (IL-10ファミリー)
- ・ IL-10サイトカインファミリー
- ・ IL-19
- ・ IL-20
- ・ IL-22
- ・ IL-24
- ・ IL-26
- 4. IL-28, IL-29 (IL-10ファミリー)
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体
- ・ 遺伝子
- ・ 発現組織および発現細胞
- ・ 発現制御
- ・ 生理活性
- ・ 疾患との関連
- ・ 薬剤開発の現況
- 5. IL-23, IL-27 (IL-12ファミリー : p35, p40, p19, p28, EBI3)
- ・ IL-23
- ・ IL-12, IL-23, IL-27の生理的意義
- 6. その他の新しいサイトカイン IL-21, IL-25
- 7. LIGHT(TNFスーパーファミリーメンバー)
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現制御
- ・ 生理活性
- ・ 疾患との関連
- ・ 薬剤開発の現況
- 主なサイトカイン
- 8. IL-1とIL-1 レセプターアンタゴニスト
- ・ 研究の歴史
- ・ 蛋白構造と遺伝子
- ・ IL-1 ファミリー
- ・ 二つの型のIL-1 の存在意義
- ・ 産生細胞
- ・ 生理活性
- ・ 受容体
- ・ 細胞内情報伝達機構
- ・ 1L-1 レセプターアンタゴニスト
- 9. IL-2
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体
- ・ 発現制御 (遺伝子, 発現細胞)
- ・ 免疫応答のカスケードと IL-2
- ・ 生理活性
- ・ 疾患との関連
- 10. IL-3
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現制御
- ・ 生理活性
- ・ 疾患との関連
- ・ 薬剤開発の現況
- 11. IL-4
- ・ 遺伝子と蛋白構造
- ・ 受容体
- ・ 産生細胞
- ・ IL-4の作用
- ・ CD4 + NK1.1 + T細胞
- ・ 臨床応用
- 12. IL-5
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現制御
- ・ 生理活性
- ・ アレルギー病態との関連
- ・ 動物モデルの開発
- ・ 薬剤開発の現況
- 13. IL-6
- ・ 蛋白構造
- ・ 遺伝子発現機構
- ・ 産生細胞
- ・ 標的細胞と機能
- ・ 受容体, gp130の構造
- ・ 信号伝達鎖gp130を共有するサイトカイン群
- ・ IL-6受容体につづく IL-6シグナル伝達経路
- ・ 細菌感染防御能
- ・ 急性期蛋白発現能
- ・ 血小板増多能
- ・ 造血能
- ・ 疾患との関連
- ・IL-6シグナル伝達による IL-6の機能阻害モデル
- 14. IL-7
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現制御
- ・ 生理活性
- ・ 疾患との関連性
- ・ 薬剤開発の現況
- 15. IL-10
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現制御
- ・ 生理活性
- ・ 疾患との関連
- ・ 薬剤開発の現況
- 16. IL-11
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現制御
- ・ 生理活性
- ・ 疾患との関連
- ・ 薬剤開発の現況
- 17. IL-12
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 生物学のまとめ
- ・ 生物活性の各論
- ・ 微生物感染における働き
- 18. IL-13
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現制御
- ・ 生理活性
- ・ 疾患との関連
- ・ 薬剤開発の現況
- 19. IL-15
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体
- ・ 遺伝子
- ・ 発現細胞
- ・ IL-15産生の調節機構
- ・ 生理活性
- ・ 疾患との関連
- ・ 薬剤開発の現況
- 20. IL-16
- 21. IL-17およびファミリーメンバー
- ・ 蛋白構造
- ・ 産生細胞
- ・ 受容体
- ・ 作用
- ・ 疾患との関連
- ・ IL-17サイトカインファミリー
- 22. IL-18
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 遺伝子とその制御
- ・ 受容体と自然免疫受容体
- ・ シグナル伝達系
- ・ 多様な産生細胞
- ・ 産生・分泌制御機構
- ・ 生理活性
- ・ 生体防御における IL-18の役割
- ・ 疾患との関連
- ・ IL-18を標的とした疾病治療戦略
- 23. インターフェロン
- ・ 基礎的特徴
- ・ その他の生物学的活性
- ・ 臨床応用
- 24. 腫瘍壊死因子 (TNFα)
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体
- ・ TNFおよびTNFRの遺伝子
- ・ 発現細胞
- ・ 発現制御
- ・ 生理活性
- ・ 疾患との関連
- ・ 薬剤開発の現状
- 25. TGFβ
- ・ 発見の経緯
- ・ 蛋白構造
- ・ TGFβスーパーファミリー
- ・ 受容体
- ・ 遺伝子構造と潜在型TGFβ
- ・ 生理活性
- ・ 細胞内シグナル伝達
- ・ 疾患との関連
- ・ 薬剤の開発の現況
- 26. G-CSF
- ・ G-CSFの構造
- ・ G-CSFの産生
- ・ G-CSFの作用
- ・ G-CSFの臨床展開
- 27. トロンボポエチン(TPO)
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体とシグナル伝達
- ・ 遺伝子の構造と発現
- ・ TPO濃度の調節機構
- ・ TPOと病態
- ・ 生物活性
- ・ 血小板減少動物におけるTPOの作用
- ・ TPOの臨床試験と将来展望
- 28. エリスロポエチン
- ・ 発見の経緯
- ・ 赤血球の産生とEPO
- ・ 貧血とEPO
- ・ 生化学
- ・ 受容体
- ・ EPO受容体遺伝子の構造異常と赤血球増加症
- ・ 臨床応用
- 29. 破骨細胞分化因子 (ODF/RANKL)
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現制御
- ・ 生理活性
- ・ 疾患との関連
- ・ 薬剤開発の現況
- ケモカイン受容体とそれらのリガンド
- 30. CXCR1/2 (IL-8, GRO / MGSA, GCP-2, ENA-78)
- ・ 発見の経緯
- ・ リガンド蛋白の構造
- ・ 受容体蛋白の構造
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現制御
- ・ 生理活性
- ・ 疾患との関連
- ・ 薬剤開発の現状
- 31. CXCR3 (IP-10, Mig, I-TAC)
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現制御
- ・ 生理活性
- ・ 疾患との関連
- ・ 薬剤開発の現況
- 32. CXCL12 (SDF-1 / PBSF)とその受容体CXCR4
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現制御
- ・ 生理活性
- ・ 生理的役割
- ・ 疾患との関連
- ・ 薬剤開発の現況
- 33. BLC/CXCL13 (CXCR5)
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体
- ・ 遺伝子
- ・ 発現細胞と発現制御
- ・ 生理活性
- ・ 疾患との関連
- ・ 薬剤の開発
- 34. CXCR6 (CXCL16)
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体
- ・ 遺伝子
- ・ 発現制御
- ・ 生理活性
- ・ 疾患との関連
- ・ 薬剤開発の現状
- 35. CCR1/5 (MIP-1α・β, RANTES)
- ・ 発見の経緯
- ・ 遺伝子
- ・ 蛋白構造
- ・ 受容体
- ・ 発現細胞・発現制御
- ・ 生理活性
- ・ AIDSとの関連
- ・ 疾患との関連
- ・ 薬剤開発の現況
- 36. CCR2 (MCP-1, 3)
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現制御
- ・ 生理活性
- ・ 疾患との関連
- ・ 薬剤開発の現況
- 37. CCR3 (eotaxin)
- ・ 発見の経緯
- ・ Eotaxinの蛋白構造
- ・ CCR3の構造, 情報伝達とリガンド
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現とその制御
- ・ 生理活性
- ・ 疾患との関連
- ・ 薬剤開発の現況
- 38. CCR4/8 (TARC, MDC / I-309)
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体およびリガンド
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現制御
- ・ 生理活性
- ・ 疾患との関連
- ・ 薬剤開発の現況
- 39. CCR6 (LARC/MlP-3α / exodus / CCL20)
- ・ 発見の経緯
- ・ 蛋白構造
- ・ リガンド
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現制御
- ・ 生理活性
- ・ 疾患との関連
- ・ 薬剤開発の現況
- 40. CCR9 (TECK / CCL25)
- ・ 発見の経緯
- ・ 蛋白構造
- ・ リガンド
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現制御
- ・ 生理活性
- ・ 疾患との関連
- 41. CCR7 / CCL19, CCL21
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現制御
- ・ シグナル伝達
- ・ 白血球動態制御
- ・ 器官発生
- ・ その他の生理活性
- ・ 疾患との関連
- ・ 薬剤開発の現況
- 42. CCR10 (CCL27 / ILC / CTACKおよびCCL28 / MEC)
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現制御と生理活性
- ・ 疾患との関連
- ・ 薬剤開発の可能性
- 43. CX3CR / XCR (fractalkine / neurotactin, lymphotactin)
- ・ 発見の経緯
- ・ 蛋白構造
- ・ 受容体
- ・ 遺伝子
- ・ 発現細胞
- ・ 発現制御
- ・ 生理活性
- ・ 疾患との関連
- ・ 薬剤開発の状況
- サイトカインの細胞内情報伝達機構
- 44. サイトカイン受容体とシグナル伝達機構
- ・ タイプIおよびタイプII受容体
- ・ タイプIII受容体 (TNF受容体スーパーファミリー)
- ・ タイプIV受容体
- 45. Th1 / Th2細胞分化における細胞内シグナル伝達機構
- ・ Th1分化に至るシグナル伝達メカニズム
- ・ Th2分化に至るシグナル伝達メカニズム
- ・ サイトカイン遺伝子におけるエピジェネティックな変化とTh1/Th2分化
- ・ IL-4遺伝子におけるピストンのアセチル化
- ・ IL-4遺伝子座におけるDNAのメチル化・脱メチル化とTh2分化
- ・ サイトカインシグナル抑制制御分子SOCSによるTh1/Th2分化制御
- 46.サイトカインシグナルの負の制御機構
- ・ サイトカインシグナルの負の制御
- ・ CIS / SOCSファミリー
- 47. ケモカイン受容体シグナル伝達機構
- ・ ケモカイン受容体の細胞表面における局在 (存在様式)
- ・ 細胞遊走に制御するシグナル伝達
- ・ 細胞遊走以外のシグナル伝達
- ・ ケモカイン受容体とT細胞受容体のシグナルのクロストーク
- ・ T細胞の分化制御におけるケモカイン受容体の役割
- 48. ケモカイン遺伝子発現制御
- ・ IL-8 / CXCL8遺伝子発現調節機構
- ・ Groα / CXCL1遺伝子発現調節機構
- ・ IP-10 / CXCL10
- ・ MCP-1 / CCL2遺伝子発現調節機構
- ・ RANTES / CCL5
- ・ eotaxin / CCL11
- ・ LARC (liver-and activated-regulated chemokine) / macrophage inflammatory protein-3α / CCL20遺伝子発現制御機構
- ・ EBI1-ligand chemokine (ELC) / MIP-3β / CCL19
- ・ Thymus-and activated-regulated chemokine (TARC) / CCL20
- ・ BCL-6によるCCケモカイン遺伝子制御機構
- ・ フラクタルカイン / CX3CL1
- 神経 : 内分泌・免疫相関
- 49. サイトカインの内分泌・代謝系における役割
- ・ サイトカインと情報伝達の起源
- ・ 個体発生と神経・内分泌・サイトカイン相関
- ・ ホメオスターシス維持装置としての免疫・神経・内分泌相関
- ・ サイトカインと食欲・肥満
- ・ 睡眠
- ・ 骨
- 50. 神経ペプチドとサイトカイン
- ・ NPY
- ・ CGRP
- ・ VIP
- ・ SP
- ・ SOM
- 生体内での主な役割
- 51. 感染防御とサイトカイン
- ・ 自然免疫による感染防御とサイトカイン
- ・ 結核菌・リステリア感染防御とサイトカイン
- ・ 黄色ブドウ球菌感染防御とサイトカイン
- ・ ウイルス感染防御とサイトカイン
- 52.ケモカインとHIV感染
- ・ HIV-1コレセプター発見の経緯
- ・ HIV-1感染の分子機構とケモカイン / ケモカイン受容体
- ・ HIV-1の細胞指向性とケモカイン / ケモカイン受容体
- ・ CD8 T細胞から分泌される抗HIV-1因子(CAF) をめぐる謎
- ・ HIV感染・エイズ発症抵抗性とケモカイン受容体遺伝子多型との関連
- ・ ケモカイン / ケモカイン受容体をターゲットとする抗HIV-1 治療法の開発
- ・ ケモカイン受容体の発見とHIV感染動物モデルの開発
- 53. 炎症とサイトカイン
- ・ 炎症性サイトカイン
- ・ 急性炎症反応とサイトカイン
- ・ 炎症細胞浸潤とサイトカイン
- ・ 炎症と免疫反応
- ・ サイトカイン・インヒビター
- ・ 炎症の修復
- 54. ケモカインによる炎症・免疫反応制御
- ・ ケモカイン研究の進展
- ・ 免疫システム構築因子としてのケモカイン
- ・ Th1 / Th2優位免疫疾患とケモカイン
- ・ 樹状細胞とケモカイン
- 55. 炎症反応に関与する接着分子とケモカインによるその機能制御
- ・炎症反応とサイトカイン・ケモカイン
- ・炎症細胞浸潤に関与する接着分子群
- 56. アレルギーとサイトカイン・ケモカイン
- ・ アレルギーにおける好酸球の役割
- ・ サイトカインoverview
- ・ Th1 / Th2セオリーからみたアレルギー反応におけるサイトカインの参加
- ・ アレルギーにおける好酸球活性化とケモカイン
- ・ 気道上皮細胞とケモカイン・ケモカインレセプター
- ・ 好酸球・気道上皮関連ケモカイン, ケモカインレセプターを標的としての治療戦略
- 57. 造血機構とサイトカイン
- ・ 造血幹細胞の生物学的特徴
- ・ 造血幹細胞の自己複製とサイトカイン
- ・ ヒト造血幹細胞の増殖に関与するサイトカイン
- ・ 造血幹細胞からの血球分化とサイトカイン
- サイトカインの臨床応用
- 58. サイトカイン遺伝子導入樹状細胞によるがん免疫療法
- ・ 樹状細胞とは
- ・ 樹状細胞を用いたがん免疫療法に関する臨床研究の現況
- ・ 本邦におけるがん遺伝子治療の現状
- ・ サイトカイン遺伝子導入樹状細胞を用いた研究の背景
- ・ IL-12と抗腫瘍免疫反応
- ・ IL-12遺伝子導入樹状細胞を用いたがん免疫遺伝子治療
- ・ 遺伝子導入樹状細胞を用いた臨床試験への準備
- 59. サイトカイン阻害療法による難治性疾患の治療
- ・ 生物学的製剤
- ・ TNFを標的とした製剤
- ・ TNF阻害製剤の効果比較, 適応と今後の課題
- ・ IL-1を標的とした治療
- ・ IL-6を標的とした製剤
- 60. サイトカイン遺伝子導入による自己免疫疾患の抑制
- ・ サイトカイン遺伝子導入法
- ・ サイトカイン遺伝子導入による自己免疫疾患の抑制の実際
- 61. サイトカインの測定法と臨床的意義
- ・ サイトカインの測定法
- ・ サイトカイン測定の臨床的意義
- 和文索引
- 欧文索引
- 奥付
参考文献
オーバービュー
P.17 掲載の参考文献
-
3) 西本憲弘, 吉崎和幸, 嶋 良仁・他:ヒト型抗IL-6 受容体抗体を用いたミエローマ, キャッスルマン病, 慢性関節リウマチの治療. 治療学 30:66-69, 1996.
-
8) Waksmann BH:Lymphokine research:a historical overview. Lymphokine Reports 1:1-6, 1980.
-
25) Disanto Jp, Dautry-Varsat A, Ceitain S et al.:Interleukin 2 (IL-2) receptorγ-chain mutations in X-linked severe combined immunodeficiency disease result in the loss of high-affinity IL-2 receptor binding. Eur. J. Immunol. 24:475-479, 1994.
-
29) Leonard WJ, O'Shea JJ:Jaks and STATs:Biological implications. Annu. Rev. Immunol. 13:369-398, 1995.
-
36) Sakamoto H, Yasukawa H, Masuhara M et al.:A Janus kinase inhibitor, JAB, is an interferon-γ inducible gene and confers resistance to interferons. Blood 92:1668-1676, 1998.
-
39) Weinstock JV, Elliott D:The substance P and somatostatin interferon-γ immunoregulatory circuit. Ann. N Y Acad. Sci. 840:532-539, 1998.
-
44) Okamura H, Tsutsui H, Komatsu T et al.:Cloning of a new cytokine that induces IFN-γ production by T cells. Nature 378:88-91, 1995.
-
53) Ogasawara K, Takeda K, Hashimoto W et al.:Involvement of NK1+ T cells and their IFN-γ production in the generalyzed Schwartzman reaction. J. Immunol. 160:3522-3527, 1998.
-
55) Szabo SJ, Sullivan BM, Stemmann C et al.:Distinct effects of T-bet in Th1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295:338-342, 2000,
-
59) Katamura K, Shintaku N, Yamauchi Y et al.:Prostaglandin E2 at priming of naTve CD4+Tcells inhibits acquisition of ability to produce IFN-γ and IL-12, but not IL-5 and IL-4. J. Immunol. 155:4604-4612, 1995.
-
71) Jiang H, Lin JJ, Su Z et al.:Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogenes 11:2477-2486, 1995.
P.25 掲載の参考文献
-
6) Akahoshi T, Endo H, Kondo H:Essential involvement of interleukin-8 in neutrophil recruitment in rabbits with acute experimental arthritis induced by lipopolysaccharide and interleukin-1. Lymphokine Cytokine Res. 13:113-116, 1994.
-
9) Yokoi K, Mukaida N, Harada A et al.:Prevention of endotoxemia-induced acute respiratory distress syndrome-like lung injury in rabbits by a monoclonal antibody to IL-8. Lab. Invest. 76:375-384, 1997.
-
10) Matsumoto T, Ikeda K, Mukaida N et al.:Prevention of cerebral edema and infarct in cerebral reperfusion injury by an antibody to interleukin-8. Lab. Invest. 77:119-125, 1997
-
14) Kimura H, Kasahara Y, Kurosu K et al.:Alleviation of monocrotaline-induced pulmonary hypertension by antibodies to monocyte chemotactic and activating factor/monocyte chemoattractant protein-1. Lab. Invest. 78:571-581, 1998.
-
43) Ueno T, Toi M, Saji H et al.:Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin. Cancer Res. 6:3282-3289, 2000.
新しいサイトカイン
P.39 掲載の参考文献
-
7) Jiang H, Lin JJ, Su ZZ et al.:Subtractive hybridization identifies a novel melanoma differentiation associated gene, MDA-7, modulated during human melanoma differentiation, growth and progression. Oncogene 11:2477-2486, 1995,
-
17) Kotenko SV Izotova LS, Mirochnitchenko OV et al.:Identification of the functional interleukin-22 (IL-22) receptor complex:the IL-10R2 chain (IL-10Rβ) is a common chain of both IL-10 and IL-22 {IL-10-related T cell-derived inducible factor (IL-TIF)} receptor complexes. J. Biol. Chem. 276:2725-2729, 2001.
-
19) Pittman DD, Goad B, Lambert AJ et al.:IL-22 is tightly regulated IL-10-like molecules that induces an acute-phase response and renal tubular basophilia. Genes Immun. 2:172, 2000.
-
38) Pataer A, Vorburger SA, Barber GN et al.:Adenoviral transfer of the melanoma differentiation-associated gerle-7 (mda-7) induces apoptosis of lung cancer cells via up-regulation of the double-stranded RNA-dependent protein kinase (PKR) . Cancer Res. 62:2239-2243, 2002.
P.50 掲載の参考文献
-
2) 石田 博:インターロイキン23, 22. 臨床免疫 38:420-426, 2002.
-
14) 石田 博:IL-10と自己免疫疾患. 治療学 36:1279- 1282, 2002.
-
15) 石田 博:IL-28, IL-29, IFN-λ. 臨床免疫 40:431-441, 2003.
-
16) 石田 博:サイトカインネットワーク. Immunol. Front. 1:16-24, 1991.
P.60 掲載の参考文献
P.68 掲載の参考文献
-
4) Takeshita T, Asao H, Ohtani K et al.:Cloning of the γ chain of the human IL-2 receptor. Science 257:379-382, 1992.
-
5) Nakamura Y, Russell SM, Mess SA et al.:Heterodimerization of the IL-2 receptorB-and γ-chain cytoplasmic domains is required for signalling. Nature 369:330-333, 1994.
-
6) NeIson BH, Lord JD, Greenberg PD:Cytoplasmic domains of the interleukin-2 receptor B and γ chains mediate the signal for T-cell proliferation. Nature 369:333-336, 1994.
-
7) Noguchi M, Yi H, Rosenblatt HM et al.:Interleukin-2 receptor γ chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73:147-157, 1993.
-
8) Kondo M, Takeshita T, Ishii N et al.:Sharing of the interleukin-2 (IL-2) receptor γ chain between for IL-2 and IL-4. Science 262:1874-1877, 1993.
-
9) Noguchi M, Nakamura Y, Russel SM et al.:Interleukin-2 receptor γ chain:a functional component of the interleukin-7 receptor. Science 262:1877-1880, 1993.
-
10) Kimura Y, Takeshita T, Kondo M et al.:Sharing of the IL-2 receptor γ chain with the functional IL-9 receptor complex. Int. Immunol. 7:115-120, 1995.
-
11) Giri JG, Ahdieh M, Eisenman J et al.:Utilization of the B and γ chains of IL-2 receptor by the novel cytokine IL-15. EMBO J. 13:2822-2830, 1994.
-
12) Russell SM, Johnston JA, Noguchi M et al.:Interaction of IL-2R B and γc chains with Jak1 and Jak3:imp1ications for XSCID and XCID. Science 266:1042-1045, 1994.
-
13) Asao H, Okuyama C, Kumaki S et al.:The common γ chain is an indispensable subunit of the IL-21 receptor complex. J. Immunol. 167:1-5, 2001.
-
14) Habib T, Senadheera S, Weinberg K et al.:The common γ chain (γc) is a required signaling component of the IL-21 receptor and supports IL-21-induced cell proliferation via JAK3. Biochemistry 41:8725-8731, 2002.
-
15) Wurster AL, Rodgers VL, Satoskar AR, et al.:Interleukin 21 is a T helper (Th) cell 2 cytokine that specifically inhibits the differentiation of naive Th cells into interferon-γ-producing Th1 cells. J. Exp. Med. 196:969-977, 2002.
-
21) Strengell M, Matikainen S, Siren J et al.:IL-21 in synergy with IL-15 or IL-18 enhances IFN γ production in human NK and T cells. J. Immunol 170:5464-5469, 2003.
-
22) Barbulescu K, Becker C, Schalaak JF et al.:IL-12 and IL-18 differentially regulates the transcriptional activity of the human IFN-γ promoter in primary CD4+T lymphocytes. J. Immunol. 160:3642-3647, 1998
-
35) Javanovic DV, Di Battista JA, Martel-Pelletier J et al.:IL-17 stimulates the production and expression of proinflammatory cytokines, IL-1 β and TNF-α, by human macrophages. J. Immunol. 160:3513-3521, 1998.
P.78 掲載の参考文献
-
2) Mauri DN, Ebner R, Montgomery RI, Kochel, KD, Cheung TC, Yu GL, Ruben S, Murphy M, Eisenberg RJ, Ware CF et al.:LIGHT, a new member of the TNF superfamily, and lymphotoxic a. are ligands for herpes virus entry mediator. Immunity 8:21-30, 1998.
-
4) Crowe PD, VanArsdale TL, Walter BN, Ware CF, Hession C, Ehrenfels B, Browning JL, Din WS, Goodwin RG, Smith CA:A lymphotoxin-beta-specific receptor. Science 264:707-710, 1994.
-
5) Marsters SA, Ayres TM, Skubatch, M, Gray CL, Rothe M, Ashkenazi A:Herpes virus entry mediator, a member of the tumor necrosis factor receptor (TNFR) family, interacts with members of the TNFR-associated factor family and activates the transcription factors NF-κ Band AP-1. J. Biol. Chem. 272:14029-14032, 1997.
-
6) Zhai Y, Guo R, Hus TL, Yu GL, Ni J, Kwon BS, Jiang GW, Lu J, Tan J, Ugustus M et al.:LIGHT, a novel ligand for lymphotoxin B receptor and TR2/HVEM, induces apoptosis and suppresses ii vivo tumor formation via gene transfer. J. Clin. Invest. 102:1142-1151, 1998.
-
8) Tamada K, Shimozaki K, Chapoval AI, Zhu G, Sica G, Flies D, Boone T, Hsu II, Fu YX, Chen YL et al.:Moduration of T cell mediated immunity in tumor and graft-versus host disease modeIs through the LIGHT costimulatory pathway. Nat. Med. 6:283-289, 2000.
-
9) Tamada K, Shimozaki K, Chapoval AI, Zhai Y, Su J, Chen SF, Hsieh SL, Nagata S, Ni J, Chen L:LIGHT, a TNF-like molecule, costimulates T cell proliferation and is required for dendritic cell-mediated allogenic T cell response. J. Immunol. 164:4105-4110, 2000.
-
10) Morel Y, Schiano de Colella JM, Harrop J, Deen KC, Holmes SD, Wattam TA, Khandekar SS, Truneh A, Sweet RW, Gastaut JA, Olive D, Costello RT:Reciprocal expression of the TNF family receptor herpes virus entry mediator and its ligand LIGHT on activated T cells:LIGHT down-regulates its own receptor. J. Immunol. 165:4397-4404, 2000.
-
13) Shaikh RB, Santee S, Granger SW, Butrovich K, Cheung T, Kronenberg M, Cheroutre H, Ware CF:Constitutive expression of LIGHT on T cells leads to lymphocyte activation, inflammation, and tissue destruction. J. Immunol. 167:6330-6337, 2001.
-
14) Wang J, Chun T, Lo JC, Wu Q, Wang Y, Foster A, Tamada K, Chen L, Wang CR, Fu YX et al.:The critical role of LIGHT, a TNF family member, in T cell development. J. Immunol. 167:5099-5105, 2001.
-
16) Ye Q, Fraser CC, Gao W, Wang L, Busfield SJ, Wang C, Qiu Y, Coyle AJ, Gutierrez-Ramos JC, Hancock WW:Modulation of LIGHT-HVEM costimulation prolongs cardiac allograft survival. J. Exp. Med. 195:795-800, 2002.
-
17) Wang J, Foster A, Chin R, Yu P, Sun Y, Wang Y, Pfeffer K, Fu YX:The complementation of lymphotoxin deficiency with LIGHT, a newly discovered TNF family member, for the restoration of secondary lymphoid structure and function. Eur. J. Immunol. 32:1969-1979, 2002.
-
19) Nakagawa M, Harigai M, Kawaguchi Y et al.:LIGHT, a co-stimulatory molecule for T cells, and its receptors are expressed in synovial tissue of rheumatoid arthritis patients and contribute to TNF-a and IL-12 production. Arthritis Rheum. 46:S558, 2002
主なサイトカイン
P.91 掲載の参考文献
-
7) Daynes RA, Robertson BA, Cho B et al.:a-Melanocyte-stimulating hormone exhibits target cell selectivity in its capacity to affect interleukin 1-inducible responseso in vivo and in vitro. J. Immunol. 139:103-109, 1987.
-
9) Szucs A, Stefano GB, Hughes TK et al.:Modulation of voltage-activated ion currents on identified neurons of Helix pomatia L. by interleukin 1. Cell. Mol. Neurobiol. 12:429-438, 1992.
-
11) Onozaki K, Urawa H, Tamatani T et al.:Synergistic interactions of interleukin 1, interferon-B, and tumor necrosis factor in terminally differentiating a mouse myeloid leukemic cell line (M1) . J. Immmol 140:112-119, 1988.
-
18) Ninomiya-Tsuji J, Kishimoto K, Hiyama A et al.:The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398:252-256, 1999.
-
22) Fisher CJ, Dhainaut JF, Pribble Jp et al.:A phase III multicenter trial of human recombinant interleukin-1 receptor antagonist (IL-1ra) in the treatment of patients with septis syndrome. Lymphokine and Cytokine Res. 12:390, 1993.
-
23) Kary S, Burmester GR:Anakinra:the first interleukin-1 inhibitor in the treatment of rheumatoid arthritis. Int. J. Clin. Pract. 57:231-234, 2003.
P.103 掲載の参考文献
-
5) Kondo M, Takeshita T, Ishii N, Nakamura M, Watanabe S et al.:Sharing of the interleukin 2 (IL-2) receptor γ-chain between receptors for IL-2 and IL-4. Science 262:1874-1877, 1993.
-
6) Voss SD, Leary TP, Sondel PM, Robb RJ:Identification of a direct interaction between interleukin 2 and the p64 interleukin 2 receptor γ chain. Proc. Natl. Acad. Sci. USA 90:2428-2432, 1993.
-
9) Gesbert F, Delespine-Carmagnat M, Bertoglio J:Recent advances in the understanding of interleukin-2 signal transduction. J. Clin. Immunol. 18:307-320, 1998.
-
12) Shapiro VS, Mollenauer MN, Weiss A:Nuclear factor of activated T cells and AP-1 are insufficient for IL-2p romoter activation:requirement for CD28 up-regulation of RE/AP. J. Immunol. 161:6455-6458, 1998.
-
13) Khoshnan A, Kempiak SJ, Bennett BL, Bae D et al.:Primary human CD4+cells contain heterogeneous IκB kinase complexes:role in activation of the IL-2 promoter. J. Immunol. 163:5444-5452, 1999.
-
14) Kempiak SJ, Hiura TS, Nel AE:The jun kinase cascade is responsible for activating the CD28 response element of the IL-2 promoter:proof of cross-talk with the IκB kinase cascade. J. Immunol. 162:3176-3187, 1999.
-
15) Barz C, Naagel T, Truitt KE, Imboden JB:Mutational analysis of CD28-mediated costimulatin of jun-N-terminal kinase and IL-2 production. J. Immunol. 161:5366-5372, 1998.
-
18) Byrd VM, Ballard DW, Miller GG, Thomas JW:Fibroblast growth factor-1 (FGF-1) enhances IL-2 production and nuclear translocation of NF-κ B in FGF receptor-bearing jurkat T cells. J. Immunol. 162:5853-5859, 1999.
-
20) Bonnard M, Haughn L, Julius M:CD4-mediated inhibition of IL-2 production in activated T cells. J. Immunol. 162:1252-1260, 1999.
-
24) Thomis DC, Aramburu J, Berg LJ:The Jak family tyrosine kinase Jak3 is required for IL-2 synthesis by native/resting CD4+T cells. J. Immunol. 163:5411-5417, 1999.
-
25) Murata Y, Yamashita A, Saito T, Sugamura K, Hamuro J:The conversion of intracellular redox status of peritoneal macrophages during pathological progression of spontaneous inflammatory bowel disease in JAK3-/-and IL-2Rγ-/-mice. Int. Immunol, 16:1-10, 2002.
-
27) van Gool SW, Ceuppens JL, Walter H, de Boer M:Synergy between cyclosporin A and a monoclonal antibody to B7 in blocking alloantigen-induced T cell activation. Blood 83:176-183, 1994.
-
28) He X, Stuart JM:Prostaglandin E2 selectively inhibits human CD4+ T cells secreting low amounts of both IL-2 and IL-4. J. Immunol. 163:6173-6179, 1999.
-
32) Hassan AT, Dai A, Konieczny BT, Ring GH et al.:Regulation of alloantigen-mediated T-cell proliferation by endogenous interferon-γ:implications for long-term allograft acceptance. Transplantation 68:124-129, 1999.
-
37) van Parijs L, Biuckians A, Ibragimov A, Alt FW et al.:Functional responses and apoptosis of CD25 (IL-2Ra)-deficient T cells expressing a transgenic antigen receptor. J. Immunol. 158:3738-3745, 1997.
-
39) van Paarijs L, Refaeli Y, Lord JD, BeIson BH et al.:Uncoupling IL-2 signaIs that regulate T cell proliferation, survival, and Fas-mediated activation-induced cell death. Immunity ll:281-288, 1999.
-
41) Lord JD, McIntosh BC, Greenberg PD, NeIson BH:The IL-2 receptor promotes proliferation, bcl-2 and bcl-x induction, but not cell viability through the adapter molecule She. J. Immunol 161:4627-4633, 1998.
-
42) Dai Z, Arakelov A, Wagener M, Konieczny BT et al.:The role of the common cytokine receptor γ chain in regulating IL-2-dependent, activation-induced CD8+T cell death. J. Immunol 163:3131-3137, 1999.
-
47) Eicher DM, Waldmann TA:IL-2R a on one cell can present IL-2 to IL-2Rbg on another cell to augment IL-2 signaling. J. Immunol 161:5430-5437, 1998.
-
48) La Flamme AC, Pearce EJ:The absence of IL-6 does not affect Th2 cell development in vivo, but does lead to impaired proliferation, IL-2 receptor expression, and B cell responses. J. Immunol. 162:5829-5837, 1999.
-
49) Wrenshall LE, Platt JL:Regulation of T cell homeostasis by heparan sulfate-bound IL-2. J. Immunol. 163:3793-3800, 1999.
-
50) Zheng XX, Steele AW, Hancock WA, Kawamoto K et al.:IL-2 receptor-targeted cytolytic IL-2/Fc fusion protein treatment blocks diabetogenic autoimmunity in nonobese diabetic mice. J. Immunol. 163:4041-4048, 1999.
-
52) Ludviksson BR, Strober W, Nishikomori R, Hasan WK et al.:Administration of mAb against aEb7 prevents and ameliorates immunization-induced colitis in IL-2-/-mice. J. Immunol. 162:4975-4982, 1999
-
54) Schultz O, Sewell HE, Shakib F:Proteolytic cleavage of CD25, the a subunit of the human T cell interleukin 2 receptor, by Der p 1, a major mite allergen with cysteine protease activity. J. Exp. Med. 187:271-275, 1998.
-
57) Rafi-Janajreh AQ, Chen D, Schmits R, Mak TW et al.:Evidence for the involvement of CD44 in endothelial cell injury and induction of vascular leak syndrome by IL-2. J. Immunol 163:1619-1627, 1999.
-
64) Bowman L, Grossmann M, Rill D, Brown M et al.:IL-2 adenovector-transduced autologous tumor cells induce antitumor immune responses in patients with neuroblastoma. Blood 92:1941-1949, 1998.
-
65) Wigginton JM, Komschlies KL, Back TC, Franco JL et al.:Administration of interleukin 12 with puIse interleukin 2 and the rapid and complete eradication of murine renal carcinoma. J. Natl. Cancer Inst. 88:38-43, 1996.
P.111 掲載の参考文献
-
2) Ihle JN, Keller J, Oroszlan S et al.:Biologic properties of homogeneous interleukin 3. I. Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, P cell-stimulating factor activity, colony-stimulating factor activity, and histamine-producing cell-stimulating factor activity. J. Immunol. 131:282-287, 1983.
-
14) Koyano-Nakagawa N, Nishida J, Baldwin D et al.:Molecular cloning of a novel human cDNA encoding a zinc finger protein that binds to the interleukin-3 promoter. Mol. Cell. Biol. 14:5099-5107, 1994.
P.125 掲載の参考文献
-
12) Takeshita T, Asano H, Ohtani K et al.:Cloning of the γ chain of the human IL-2 receptor. Science 257:379-382, 1992.
-
22) Izuhara K, Feldman RA, Greer P et al.:Interaction of the c-fes proto-oncogene product with the interleukin-4 receptor. J. Biol. Chem. 269:18623-18629, 1994.
-
36) Seder RA, Boulay JL, Finkelman F et al.:CD8+ T cells can be primed in vitro produce IL-4. J. Immunol. 148:1652-1656, 1992.
-
37) Ferrick DA, Schrenzel MD, Mulvania T et al.:Differential production of IFN-γand IL-4 in response to Th1 and Th2-stimulating pathogens by γσ T cells invivo. Nature 373:255-257, 1995.
-
38) Bendelac A:Mouse NKI+Tcells. Curr. Opin. Immunol. 7:367-374, 1995.
-
40) Noben-Trauth N, Hu-Li J, Paul WE:Conventional, naive CD4+T cells provide an initial source of IL-4 during TH2 differentiation. J. Immunol. 165:3620-3625, 2000.
-
43) Nakanishi K, Howard M, Muraguchi A et al. Soluble factors involved in B cell differentiation:Identification of two distinct T cell replacing factors (TRFs). J. Immunol 130:2219-2224, 1983.
-
45) Coffman RL, Ohara J, Bond MW et al.:B cell stimulatory factor-1 enhances the IgE response of lipopolysaccharide-activated B cells. J. Immunol. 136:4538-4541, 1986.
-
49) Gascan H, Gauchat JF, Aversa G et al.:Anti-CD40 monoclonal antibodies or CD4+Tcell clones and IL-4 induce IgG4 and IgE switching in purified human B cells via different signaling pathways. J. Immunol 147:8-13, 1991.
-
51) Yoshida K, Matsuoka M, Usuda S et al.:Immunoglobulin swith circular DNA in the mouse infected with Nippostrongylus brasiliensis:Evidence for successive class switching from μ to ε via γl. Proc. Natl. Acad. Sci. USA 87:7829-7833, 1990.
-
54) Seder RA, Gazzinelli R, Sher A et al.:IL-12 acts directly on CD4+Tcells to enhance priming for IFNγ production and diminishes IL-4 inhibition of such priming. Proc. Natl. Acad. Sci. USA 90:10188-10192, 1993.
-
64) Noben-Trauth N, Shultz LD, Brombacher F et al.:An interleukin 4 (IL-4)-independent pathway for CD4+T cell IL-4 production is revealed in IL-4 receptor-deficient mice. Proc. Natl. Acad. Sci. USA 94:10838-10843, 1997.
-
69) Belosevic M, Finbloom DS, van der Meide PH:Administration of monoclonal anti-IFNγ antibodies in vivo abrogates natural resistance of C3H/HeN mice to infection with Leishmania major. J. Exp. Med. 177:1505-1509, 1989.
-
70) Noben-Trauth N, Kroph P, Muller I:Susceptibnity to Leishimnania major infection in interleukin-4-deficient mice. Science 271:987-990, 1996.
-
76) D'Andrea A, Ma X, Aste-Amezaga M et al.:Stimulatory and inhibitory effects of interleukin(IL)-4and IL-13 on the production of cytokines by human peripheral blood mononuclear cells:priming for IL-12 and tumor necrosis factor alpha production. J. Exp. Med. 181:537-546, 1995.
-
80) Wierenga EA, Snoek M, De GC et al.:Evidence for compartmentalization of functional subsets of CD4+T lymphocytes in atopic patients. J. Immunol 144:4651-4656, 1990.
-
81) Masinovsky B, Urdal D, Gallatin WM:IL-4 acts synergistically with IL-1beta to promote lymphocyte adhesion to microvascular endothelium by induction of vascular cell adhesion molecule-1. J. Immunol. 145:2886-2895, 1990.
P.138 掲載の参考文献
-
1) 高津聖志:IL-5とそのレセプター. 医学のあゆみ 156:612-616, 1991
-
3) Takatsu K:Interleukin-5 and its Receptor:From Genes to Diseases. Springer-Verlag, New York, 1995, p1-157.
-
4) Takatsu K, Tominaga A, Hamaoka T:Antigen-induced T cell-replacing factor (TRF). I . Functional characterization of a TRF producing helper T cell subset and genetic studies on TRF production. J. Immunol. 123:2414-2422, 1980.
-
5) Takatsu K, Tanaka K, Tominaga A et al.:Antigen-induced T cell-replacing factor (TRF). III. Establishment of T cell hybrid clone continuously producing TRF and functional analysis of released TRF. J. Immunol. 125:2646-2653, 1980.
-
10) Hitoshi Y, Yamaguchi N, Mita S et al.:Distribution of IL-5 receptor-positive B cells. Expression of IL-5 receptor on Ly-1(CD5) +B cells. J. Immunol. 144:4218-4225, 1990.
-
13) Yoshida T, Ikuta I, Sugaya H et al.:Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5Rα deficient mice. Immunity 4:483-494, 1996.
-
14) Tominaga A, Takahashi T, Kikuchi Y et al.:Role of carbohydrate moiety of IL-5. Effect of tunicamycin on the glycosylation of IL-5 and the biologic activity of deglycosylated IL-5. J. Immunol. 144:1345-1352, 1990.
-
17) Chaikan IM, Proudfoot A:Structure of IL-5. Interleukin-5:from molecule to drug target for asthma. (eds. Sanderson CJ, Dekker M), New York, 2009, p167-189.
-
24) Tarvernier J, Van de Heyden J, Verhee A et al.:Interleukin-5 regulates the isoform expression of its own receptor a-subunit. Blood 95:1600-1607, 2000.
-
31) Ogata N, Kouro T T, Yamada A et al.:JAK2 and JAK1 constitutively associate with an interleukin-5 (IL-5) receptor alpha and betar subunit, respectively, and are activated upon IL-5 stimulation. Blood 91:2264-2271, 1998.
-
32) Takatsu K:Interleukin-5. Curr. Opin. Immunol. 4:299-306, 1992.
-
37) Horikawa K, Kaku H, Nakajima H et al.:Essential role of signal transducer and activator of transcription (Stat) 5 for interleukin-5-dependent IgH switch recombination in mouse B cells. J. Immunol 167:5018-5026, 2001.
-
38) 等 靖道, 高津聖志:無ガンマグロブリネミア症とチロシンキナーゼ. 細胞工学 13:239-245, 1994.
-
40) Satoh S, Katagiri T, Takaki S et al.:IL-5 receptor-mediated tyrosine phosphorylation of SH2/SH3-containing proteins and activation of Bruton's tyrosine and JAK2 kinases. J. Exp. Med. 180:2101-2111, 1994.
-
48) Sanderson CJ:Interleukin-5, eosinophiIs, and disease. Blood 79:3101-3109, 1992.
-
49) Kay AB, Hamid Q, Robinson DS et al.:Asthma, eosinophiIs, and interleukin-5. EosinophiIs in Allergy and Inflammation (eds. Gleich GJ, Kay AB), Dekker, 1994, p395-406.
-
50) Desreumaux P, Jamin A, Dubucquoi S et al.:Synthesis of interleukin-5 by activated eosinophiIs in patients with eosinophilic heart diseases. Blood 82:1553-1560, 1993.
-
51) Tominaga A, Matsumoto M, Harada N et al.:Molecular properties and regulation of mRNA expression for murine T cell-replacing factor/IL-5. J. Immunol. 140:1175-1181, 1988.
-
52) Hiroi T, Yanagida M, Iijima H et al. Deficiency of IL-5 receptor alpha-chain selectively influences the development of the common mucosal immune system independent IgA-producing B-1 cell in mucosa-associated tissues. J. Immunol. 162:821-828, 1999.
-
54) Mizoguchi C, Uehara, S, Akira S et al.:Interleukin-5 induces IgG1 isotype switch recombination in mouse CD38-activated sIgD-positive B lymphocytes. J. Immunol. 162:2812-2819, 1999.
-
55) Huston MM, Moore JP, Mettes H et al.:Human B cells express IL-5 receptor messenger ribonucleic acid and respond to IL-5 with enhanced IgM production after mitogenic stimulation with Moraxella catarrhalis. J. Immunol. 156:1392-1401, 1996.
-
57) Matsumoto R, Matsumoto M, Mita S et al.:Interleukin 5 induces maturation but not class-switching of surface IgA-positive B cells into IgA-secreting cells. Immunology 66:32-38, 1989.
-
60) Sehmi R, Wardlaw AJ, Cromwell O et al.:Interleukin-5 selectively enhances the chemotactic responsivenessof eosinophiIs obtained from noraml but not eosinophilic subjects. Blood 79:2952-2959, 1992.
-
61) WaIsh GM, Hartnell A, Wardlaw AJ et al.:IL-5enhances the in vivo adhesion of human eosinophiIs, but not neutrophiIs, in a leukocyte integrin (CDI1/18)-dependent manner. Immunology 71:258-265, 1990.
-
70) Zimmermann N, Hershey GK, Foster PS et al.:chemokines in asthma:Cooperative interaction between chemokines and IL-13. J. Allergy Clin. Immunol. 111:1227-242, 2003.
-
71) Korenaga M, Hitoshi Y, Yamaguchi N et al.:The role of interleukin-5 (IL-5) in protective immunity to Strongyloides venezuelensis infection in mice. Immunology 72:502-507, 1991.
-
74) Mauser PJ, Pitman AM, Fernandez X et al.:Effects of an antibody to IL-5 in a monkey model of asthma. Am. J. Respir. Crit. Care Med. 152:467-4721 995.
-
75) Leckie M, Brinke A, Khan J et al.:Effects of an interleukin-5 blocking monoclonal antibody oneosinophiIs, airway hyper-responsiveness, and late asthmatic response. Lancet 356:2144-2148, 2000.
-
76) Flood-Page PT, Menzeies-Gow AN, Kay AB et al.:Eosinophil's role remains uncertain as antiinterleukin-5 only partially depletes numbers in asthmatic airway. Am. Rev. Crit. Care Med. 167:199-204, 2003.
P.160 掲載の参考文献
-
1) Yoshizaki K, Nakagawa T, Fukunaga K et al.:Characterization of human B cell growth factor (BCGF) from cloned T cells or mitogen-stimulated T cells. J. Immunol. 130:1241-1246, 1983.
-
5) Horii Y, Muraguchi A, Suematsu S et al.:Regulation of BSF-2/IL-6 production by human mononuclear cells:Macrophage-dependent synthesis of BSF-2/IL-6by T cells. J. Immunol. 141:1529-1535, 1988.
-
9) Ishibashi T, Kimura H, Uchida T et al.:Human interleukin 6 is a potent thrombopoietic factor in vivo in mice. Blood 74:1241-1244, 1989.
-
12) Horii Y, Muraguchi A, lwano M et al.:Involvement of IL-6 in mesangial proliferative glomerulonephritis. J. Immunol 143:3949-3955, 1989.
-
19) Patthy L:Homology of a domain of the growth hormone/prolactin receptor family with type III modules of fibronectin. Cell 61:13-14, 1992.
-
22) 田賀哲也:IL-6受容体のユニークな構造. 治療学30:9-13, 1996.
-
25) Yoshida K, Taga T, Saito M, Suematsu S, Kumanogoh A, Tanaka T, Fujiwara H, Hirata M, Yamagami T, Nakahata T, Hirabayashi T, Yoneda Y, Tanaka K, Wang W-Z, Mori C, Shiota K, Yoshida N, Kishimoto T:Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc. Natl. Acad. Sci. USA 93:407-411, 1996.
-
31) 楢崎雅司:IL-6受容体から遺伝子発現までのシグナル伝達経路. 治療学 30:14-18, 1996.
-
35) Klingmuler U, Lorenz U, Cantley LC et al.:Specific recruitment of SH-PTPI to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signaIs. Cell 80:729-738, 1995.
-
36) Akira S, Nishio Y, Inoue M, Wang X, Wei S, Matsusaka T, Yoshida K, Sudo T, Naruto M, Kishimoto T:Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 P91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77:63-71, 1994.
-
37) Tanaka T, Akira S, Yoshida K, Umemoto M, Yoneda Y, Shirafuji N, Fujiwara H, Suematsu S, Yoshida N, Kishimoto T:Targeted disruption of the NF-IL6 gerle discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 80:353-361, 1995.
-
38) 田中貴志:転写因子NF-IL-6-ノックアウトマウス からのレッスン. 治療学 30:27-31, 1996.
-
39) Isshiki H, Akira S, Sugita T, Nishio Y, Hashimoto S, Pawlowski T, Suematsu S, Kishimoto T:Reciprocal expression of NF-IL6 and C/EBP in hepatocytes:Possible involvement of NF-IL6 in acute phase protein gene expression. New Biologist. 3:63-70, 1991.
-
40) Ishibashi T, Kimura H, Shikawa Y et al.:Interleukin 6 is a potent thrombopoietic factor in vivo in mice. Blood 74:1241-1244, 1989.
-
42) Asano S, Okano A, Ozawa K, Nakahata T, Ishibashi T, Koike K, Kimura H, Tanioka Y, Shibuya A, Hirano T, Kishimoto T, Takaku F, Akiyama Y:In vivo effects of recombinant human interleukin-6 in primates:stimulated production of platelets. Blood 75:1602-1605, 1990.
-
44) 中畑龍俊:IL-6, gp130と造血幹細胞. 治療学 30:53-58, 1996.
-
45) Ogawa M:Differentiation and proliferation of hematopoietic stem cells. Blood 81(11):2844-2853, 1993.
-
47) Shinohara M, Koike K, Nakahata T:Synergism of interferon-gamma and stem cell factor on the development of murine hematopoietic grogenitors in serum-free culture. Blood 81(6):1435-1441, 1993.
-
48) Sui X, Tsuji K, Tanaka R, Tajima S, Muraoka K, Ebihara Y, Ikebuchi K, Yasukawa K, Taga T, Kishimoto T et al.:gp130 and c-Kit signalings synergize for ex vivo oxpansion of human primitive hemopoietic progenitor cells. Proc. Natl. Acad. Sci. USA 92:2859-2863, 1995.
-
49) 緒方 篤, 西本憲弘, 井上正宏・他:インターロイキン6と疾患. 病態生理 12:12-29, 1993.
-
52) Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K, Asaoku H, Tang B, Tanabe O, Tanaka H, Kuramoto A, Kishimoto T:Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 332:83-85, 1988.
-
53) Klein B, Zhang X-G, Jourdan M et al.:Paracrine rather than antocrine regulation of myeloma-cell growth and differentiation by interleukin-6. Blood 73:517-526, 1989.
-
55) Solay E, Guiguet M, Zeller V et al.:Radioimmunoassay for the measurement of serum IL-6 and its correlation with tumor cell mass parameters in multiple myeloma. Am. J. Hematol. 39:163-171, 1992.
-
56) Bell JB, Montes A, Gooding R et al.:Comparison of interleukin-6 levels in the bone marrow of multiple myeloma patients with disease severity and clonogenicity in vitro. Leukemia 5:958-961, 1991.
-
57) Asaoku H, Kawano M, Iwato K et al.:Decrease in BSF-2/IL-6 response in advanced cases of multiple myeloma. Blood 72:429-432, 1988.
-
59) Yee C, Biondi A, Wang XH et al.:A possible autocrine role for interleukin-6 in two lymphoma cell lines. Blood 74:798-804, 1989.
-
60) Emilie D, Coumbaras J, Raphael M, Devergne O, Delecluse HJ, Gisselbrecht C, MichieIs JF, Van Damme J, Taga T, Kishimoto T et al:Interleukin-6 production in high-grade B lymphomas:correlation with the presence of malignant immunoblasts in acquired immunodeficiency syndrome and in human immunodeficiency virus-seronegative patients. Blood 80:498-504, 1992.
-
61) Jucker M, Abts H, Li W, Schindler R, Merz H, Gunther A, von Kalle C, Schaadt M, Diamantstein T, Feller AC et al:Expression of interleukin-6 and interleukin-6 rerceptor in Hodgkin's disease. Blood 77:2413-2418, 1991.
-
62) Gause A, Scholz R, Klein S et al.:Increased levels of circulating interleukn-6 in patients with Hodgkin's disease. Hematol. Oncol. 9:307-313, 1991.
-
63) Shimizu S, Hirono T, Yoshioka R, Sugai S, Matsuda T, Taga T, Kishimoto T, Konda S:Interleukin 6 (B cell stimulatory factor 2)-dependent growth of a Lennert's lymphoma-derived T cell line (KT-3). Blood 72:1826-1828, 1988.
-
65) Givon T, Slavin S, Haran-Ghera N et al.:Antitumor effects of human recombinant interleukin-6 on acute myeloid leukemia in mice and cell cultures. Blood 79:2392-2398, 1992.
-
71) Blay JY, Negrier S, Combaret V et al.:Serum level of interleukin-6 as a prognosis factor in metastatic renal cell carcinoma. Cancer Res. 52:3317-3332, 1992.
-
74) Wu S, Rodabaugh K, Martinez-Maza O, Watson JM, Silberstein DS, Boyer CM, Peters WP, Weinberg JB, Berek JS, Bast RC Jr:Stimulation of ovarian tumor cell proliferation with monocyte products includin interleukin-1, interleukin-6 and tumor necrosis factor-alpha. Am. J. Obstet. Gynecol. 166:997-1007, 1992.
-
75) Chein L, Mory Y, Zilberstein A et al.:Growth inhibition of human breast carcinoma and leukemia/lymphoma cell lines by recombinant interferon B2. Proc. Natl. Acad. Sci. USA 85:8037-8041, 1988.
-
76) Tomm I, Cardinale I, Krueger J et al:Interleukin 6 decreases cell-cell asociation and increases motility of ductal breast carcinoma cells. J. Exp. Med. 170:1649-1669, 1989.
-
79) Miles SA, Rezai AR Salazar-Gonzalez JF, Myden MV, Stevens RH, Logan DM, Mitsuyasu RT, Taga T, Hirano T, Kishimoto T, Martinez-Maza O:AIDS Kaposi sarcoma-derived cells produce and respond to interleukin 6. Proc. Natl. Acad. Sci. USA 87:4068-4072, 1990.
-
80) Hirano T, Taga T, Yasukawa K, Nakajima K, Nakano N, Takatsuki F, Shimizu M, Murashima A, Tsunasawa S, Sakiyama F, Kishimoto T:Human B cell differentiation factor defined by an anti-peptide antibody and its possible role in autoantibody production. Proc. Natl. Acad. Sci. USA 84:228-231, 1987.
-
82) van Meier E, Sawamura Y, Diserens AC et al.:Human glioblastoma cells release interleukin 6 in vivo and vitro and in vitro. Cancer Res. 50:6683-6688, 1990.
-
83) Stephanou A, Knight RA, Annicchiarico Petruzzelli M, Finazzi Agro A, Lightmann SL, Melino G:Interleukin-1Band interleukin-6 mRNA are expressed in human glioblastoma and neuroblastoma cells respectively. Funct-Neurol. 7:129-133, 1992.
-
89) Saji T, Yanagawa E, Matsuura H et al.:Increased serum interleukin-6 in cardiac myxoma. Am. Heart J. 122:579-580, 1990.
-
91) Yoshizaki K, Matsuda T, Nishimoto N, Kuritani T, Taeho L, Aozasa K, Nakahata T, Kawai H, Tagoh H, Komori T, Kishimoto S, Hirano T, Kishimoto T:Pathogenic significance of interleukin-6 (IL-6/BSF-2) in Castleman's disease. Blood 74:1360-1367, 1989.
-
92) Leger Ravet MB, Peuchmaur M, Devergne O, Audouin J, Raphael M, van Damme J, Galanaud P, Diebold J, Emilie D:Interleukin-6 gene expression in Castleman's disease. Blood 78:2923-2930, 1991.
-
93) Dohi K, Iwano M, Muraguchi A, Horii Y, Hirayama T, Ogawa S, Shiiki H, Hirano T, Kishimoto T, Ishikawa H:The prognostic significance of urinary interleukin 6in IgA nephropathy. Clin. Nephrol. 35:1-5, 1991.
-
99) Tursen K, Kupper TA, Degenstein L et al.:Interleukin6;insights to its function in skin by overexpression in transgenic mice. Proc. Natl. Acad. Sci. USA 89:5068-5072, 1992.
-
100) Nakajima K, Martinez-Maza O, Hirano T, Breen EC, Nishanian PG, Salazar-Gonzalez JF, Fahey JL, Kishimoto T:Induction of IL-6 (B cell stimulatory factor-2/EFNb2) production by HIV. J. Immunol. 142:531-536, 1989.
-
101) Bree EC, Rezai AR, Nakajima K, Beall GN, Mitsuyasu RT, Hirano T, Kishimoto T, Martinez-Maza O:Infection with HIV is associated with elevated IL-6 levels and production. J. Immunol. 144:480-484, 1990.
-
103) Lal RB, Rudolph DL:Constitutive production of interleukin-6 and tumor necrosis factor-alpha from spontaneously prohferating T cells in patients withhuman T-cell lymphotropic virus type-1/H. Blood78:571-574, 1991.
-
105) Tosato G, Tanner J, Jorles KD et al.:Identification ofinterleukin-6 as arl autocrine growth factor forEpstein-Barr virus-immortalized B cells. J. Virol. 64:3033-3041, 1990.
-
106) Gosselin J, Flamand L, D'Addario M, Hiscott J, Stefanescu I, Ablashi DV, Gallo RC, Menezes J:Modulatory effects of Epstein-Barr herpes simplexand human herpes-6 viral infections and coinfectionon cytokine synthesis. A comparative study. J. Immunol l46:181-187, 1992.
-
107) Ohzato H, Yoshizaki K, Nishimoto N, Ogata A, TagohH, Monden M, Gotoh M, Kishimoto T, Mori T:Interleukin-6 as a new indicator of inflammatorystatus:Detection of serum levels of interleukin-6 and C-reactive protein after surgery. Surgery 111:201-209, 1992.
-
109) Hirano T, Matsuda T, Turner M, Miyasaka N, Bucham G, Tang B, Sato K, Shirnizu M, Maini R, Feldman M, Kishimoto T:Excessive production ofinterleukin 6/B cell stimulatory factor-2 in rheumatoidarthritis. Eur. J. Immunol. 18:1797-1801, 1988.
-
110) 西本憲弘, 緒方 篤, 嶋 良仁・他:サイトカイン, IL-6. 癌と化学療法 21:1707-1716, 1994.
-
111) Sato K, Tsuchiya M, Saldanha J, Koishihara Y, Ohsugi Y, Kishimoto T, Bendig MM:Reshaping ahuman antibody to inhibit the interleukin-6-dependent tumor cell growth. Cancer Res. 53:851-856, 1993.
-
112) Nishimoto N, Ogata A, Shima Y, Tani Y, Ogata H, Nakagawa M, Sugiyama H, Yoshizaki K, Kishimoto T:Oncostatin M, leukemia inhibitory factor, andinterleukin-6 induce the proliferation of humanplasmacytoma cells via the common signaltransducer, gp130. J. Exp. Med. 179:1343-1347, 1994.
-
113) 西本憲弘, 吉崎和幸, 嶋 良仁・他:ヒト型抗IL-6 受容体抗体を用いたミエローマ, キャッスルマン病, 慢性関節リウマチの治療. 治療学 30:66-69, 1996.
-
114) Nishimoto N, Sasai M, Shima Y, Nakagawa M, Matsumoto T, Shirai T, Kishimoto T, Yoshizaki K:Improvement in Castleman's disease by humanizedanti-interleukin-6 receptor antibody therapy. Blood95:56-61, 2000.
P.171 掲載の参考文献
-
8) Lupton SD, Gimpel S, Jerzy R et al.:Characterization of the human and murine IL-7genes. J. Immunol 144:3592-3601, 1990.
-
13) Tang J, Nuccie BL, Ritterman I et al.:TGF-beta down-regulates stromal IL-7 secretion and inhibits proliferation of human B cell precursors. J. Immunol 159:117-125, 1997.
-
15) Ariizumi K, Meng Y, Bergstresser PR et al.:IFN-gamma-dependent IL-7gene regulation in keratinocytes. J. Immunol 154:6031-6039, 1995.
-
16) Aragane Y, Schwarz A, Luger TA et al.:Ultraviolet light suppresses IFN-gamma-induced IL-7 gene expression in murine keratinocytes by interfering with IFN regulatory factors. J. Immunol 158:5393-5399, 1997.
-
20) von Freeden-Jeffry U, Vieira P, Lucian LA et al.:Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181:1519-1526, 1995.
-
21) Moore TA, von Freeden-Jeffry U, Murray R et al.:Inhibition of gamma delta T cell development and earlythymocyte maturation in IL-7-/-mice. J. Immunol 157:2366-2373, 1996.
-
23) Morrissey PJ, Conlon P, Braddy S et al.:Administration of IL-7 to mice with cyclophosphamide-induced lymphopenia accelerates lyrnphocyte repopulation. J. Immunol. 146:1547-1552, 1991.
-
24) Damia G, Komschlies KL, Faltynek CR et al.:Administration of recombinant human interleukin-7 alters the frequency and number of myeloid progenitor cells in the bone marrow and spleen of mice. Blood 79:1121-1129, 1992.
-
26) von Freeden-Jeffry U, Solvason N, Howard M et al:The earliest T lineage-committed cells depend on IL-7 for Bcl-2 expression and normal cell cycle progression. Immunity 7:147-154, 1997.
-
27) Kim K, Lee CK, Sayers TJ et al.:The trophic action of IL-7 on pro-T cells:inhibition of apoptosis of pro-T1, -T2, and-T3 cells correlates with Bcl-2 and Bax levels and is independent of Fas and p53 pathways. J. Immunol 160:5735-5741, 1998.
-
29) Ye SK, Agata Y, Lee HC et al.:The IL-7 receptor controIs the accessibility of the TCR gamrna locus by Stat5 and histone acetylation. Immunity 15:813-823, 2001.
-
34) Lynch DH, Miller RE:Induction of murine lymphokine-activated killer cells by recombinant IL-7. J. Immunol 145:1983-1990, 1990.
-
36) Murali-Krishna K, Lau LL, Sambhara S et al.:Persistence of memory CD8 T cells in MHC class I deficient mice. Science 286(5443):1377-1381, 1999.
P.185 掲載の参考文献
-
5) Kisielow P, Bluthmann H, Staerz UD et al.:Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+CD8+ thymocytes. Nature 333:742-746, 1998.
-
10) Kim JM, Brannan CI, Copeland NG et al.:Structure of the mouse IL-10 gene and chromosomal localization of the mouse and human genes. J. Immunol. 148:3618-3623, 1992.
-
12) Liu Y, Wei S, Ho A et al, :Expression cloning and characterization of a human interleukin-10 receptor. J. Immunol. 152:1821-1829, 1994.
-
19) 石田 博:Tr1細胞の分化誘導におけるCD46. 臨床免疫 40:563-571, 2003.
-
20) O'Garra A, Chang R, Go N et al.:Ly-l B (B-1) cells are the main source of B cell-derived interleukin 110. Eur, J. Immunol. 22:711-717, 1992.
-
22) KUhn R, L6hler J, Rennick D et al.:Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263-274, 1993.
-
27) Saito l, Haruta K, Shimuta M et al.:Fas ligand-mediated exocrinopathy resembling Sjogren's syndrome in mice transgenic for IL-10. J. Immunol. 162:2488-2494, 1999.
-
29) 石田 博, 柳田英寿:膠原病患者の血清サイトカイン診断. 臨床病理 47:327-334, 1999.
-
31) 石田 博, 熊谷俊一, 井村裕夫:細胞内情報伝達系と疾患. SLE. Clin. Neurosci. 9:892-895, 1991.
-
32) Kennedy MK, Torrance DS, Picha KS et al.:Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveaIs that IL-10 mRNA expression correlates with recovery. J. Immunol. 149:2496-2505, 1992.
-
34) Rosenbaum JT, Angell E:Paradoxical effects of IL-10 in endotoxin-induced uveitis. J. Immunol 155:4090-4094, 1995.
-
40) Howard M, Muchamuel T, Andrade S et al.:Interleukin 10 protects mice from lethal endotoxemia. J. Exp. Med. 177:1205-1208, 1990.
-
49) Huhn R, Radwanski E, O'Connell SM et al.:Pharmacokinetics and immunomodulatory properties of intravenously administered recombinant humarl interleukin-10 in healthy volunteers. Blood 87:699-705, 1996.
P.197 掲載の参考文献
-
4) Davidson AJ, Freeman S-A, Crosier KE et al:Expression of murine intereukin 11 and its receptor α-chain in adult and embryonic tissues. Stem Cells 15:119-124, 1997.
-
5) Cherel M, Sorel M, Apiou F et al.:The human interleukin-11 receptoragene (IL11RA):Genomic organization and chromosome mapping. Genomics 32:49-53, 1996.
-
6) Cherel M, Sorel M, Lebeau B et al.:Molecular cloning of two isoforms of a receptor for the human hematopoietic cytokine interleukin-11. Blood 86:2534-2540, 1995.
-
10) Brandt JE, Hoffman R:Interleukin-11 plays a pivital role in the in vitro expansion of human hematopoietic progenitor and stem cells. Blood 82:368a, 1993.
-
11) Neben S, Donaldson D, Sieff C et al.:Synergistic effects of interieukin-11 with other factors on the expansion of murine hematopoietic progenitors and maintenance of stem cells in liquid culture. Exp. Hematol. 22:353-359, 1994.
-
12) Keller DC, Du XX, Srour EF et al.:Inteleukin-11 inhibits adipogenesis and sitmulates myelopoiesis in human long-term marrow cultures. Blood 82:1428-1435, 1993.
-
13) Quesniaux VFI, Clark SC, Turner K et al.:Interleukin-11stimulates multiple phases of erythropoiesis. Blood 80:1218-1223, 1992.
-
15) Teramura M, Kobayashi S, Hoshino S et al.:Interleukin-11 enhances human megakaryocytopoiesis in vitro. Blood 79:327-331, 1992.
-
16) Hangoc G, Yin T, Cooper S et al.:In vivo effects of recombinant interleukin-11 On myelopoiesis in mice. Blood 81:965-972, 1993.
-
17) Trepicchio WL, Bozza M, Pedneault G:Recombinant human IL-11 attenuates the inflammatory response through downregulation of proinflammatory cytokine release and nitric oxide production. J. Immunol. 157:3627-3634, 1996.
-
18) Redlich CA, Gao X, Rockwell S et al:IL-11 enhances survival and decreases TNF production after radiation-induced thoracic injury. J. Immunol. 157:1705-1710, 1996.
-
27) Maier R, Ganu V, Lotz M:Interleukin-11, an inducible cytokine in human articular chondrocytes and synoviocytes, stimulates the production of tissue inhibitor of metalloproteinases. J. Biol. Chem. 268:21527-21532, 1993.
-
29) Baumann H, Schendel P:Interleukin-11regulates the hepatic expression of the same plasma protein genes as interleukin-6. J. Biol. Chem. 226:20424-20427, 1991
-
37) Hu JP, Cesano A, Santoli D et al:Effects of interleukin-11 on the proliferation and cell cycle status of myeloidleukemic cells. Blood 81:1586-1592, 1993.
-
38) Kobayashi S, Teramura M, Sugawara I et al.:Interleukin-11 acts as an autocrine growth factor formegakaryoblastic cell lines. Blood 81:889-893, 1993.
-
42) Du XX, Doerschuk, CM, Orazi A et al.:Abone marrowstromal-cell drived growth factor, interleukin-11, stimulates recovery of small intestinal mucosal cellsafter cytoablative therapy. Blood 83:33-37, 1994.
-
45) Gordon MS, McCaskill-Stevens WJ, Battiato LA et al.:Aphase 1 trial of recombinant human interleukin-11 (Neumega rhIL-11 growth factor) in women withbreast cancer receiving chemotherapy. Blood 87:3615-3674, 1996.
-
46) Tepler I, Elias L, Smith JW 2nd et al.:A randomized placebo-controlled trial of recombinant humaninter leukin-11 in cancer patients with sever ethrombocytopenia due to chemotherapy. Blood 87:3607-3614, 1996.
-
50) Du XX, Doerschuk CM, Orazi A et al.:A bone marrow stromal-cell derived growth factor, interleukin-11, stimulates recovery of small intestinal mucosal cells after cytoablative therapy. Blood 83:33-37, 1994.
-
51) Orazi A, Du X, Yang Z et al.:Interleukin-11 prevents apoptosis and accelerates recovery of small intestinal mucosa in mice treated with combined chemotherapy and radiation. Lab. Invest. 75:33-42, 1996.
-
52) Peterson RL, Bozza MM, Dorner AJ et al.:Interleukin-11 induced intestinal epithelial cell growth arrest through effects on retinoblastoma protein phosphorylation. Am. J. Phathol. 149:895-902, 1996.
-
53) Elis M, Zwaan F, Hedstrom U et al.:Recombinant human interleukin-11 and bacterial infection in patients with haematological malignant disease under going chemotherapy:adouble-blind randomized trial. Lancet 361:275-280, 2003.
-
55) Opal SM, Jhung J, Keith JC Jr et al.:Additive effects of human recombinant interleukin-11 and granulocyte colony-stimulating factor in experimental gram-negative sepsis. Blood 93:3467-3472, 1997.
-
61) Moreland L, Gugliotti R, King K et al.:Results of a Phase I/II randomized, masked, plasebo-controlled trial of recombinant human interleukin-11 (rhIL-11) in the treatment of subjects with active rheumatoid arthritis. Arthritis Res. 3:247-252, 2001.
P.209 掲載の参考文献
-
2) Wolf SF, Temple PA, Kobayashi M et al.:Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J. Immunol 146:3074-3081, 1991.
-
6) D'Andrea A, Rengaraju M, Valiante NM et al.:Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J. Exp. Med. 176:1387-1398, 1992.
-
7) Macatonia SE, Hosken NA, Litton M et al.:Dendritic cells produce IL-12 and direct the development of Thl cells from naive CD4+ T cells. J. Immunol 154:5071-5079, 1995.
-
9) Ma X, Trinchieri G:Regulation of interleukin-12 production in antigen-presenting cells. Adv. Immunol 79:55-92, 2001.
-
12) Pflanz S, Timans JC, Cheung J et al.:IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells. Immunity 16:779-790, 2002.
-
18) Tsuchiya Y, Igarashi M, Suzuki R et al.:Production of colony-stimulating factor by tumor cells and the factor-mediated induction of suppressor cells. J. Immunol l41:699-708, 1988.
-
21) Hashimoto W, Takeda K, Anzai R et al.:Cytotoxic NK1. 1 Ag-alpha beta T cells with intermediate TCR induced in the liver of mice by IL12. J. Immunol 154:4333-4340, 1995.
-
22) Takeda K, Seki S, Ogasawara K et al.:Liver NK1. 1+ CD4+ alpha beta T cells activated by IL-12 as a major effector in inhibition of experimental tumor metastasis. J. Immunol 156:3366-3373, 1996.
-
24) Takahashi M, Ogasawara K, Takeda K et al.:LPS induces NK1. 1+ alpha beta T cells with potent cytotoxicity in the liver of mice via production of IL 12 from Kupffer cells. J. Immunol 156:2436-2442, 1996.
-
26) Rossi AR, Pericle F, Rashleigh S et al:Lysis of neuroblastoma cell lines by human natural kiiler cells activated by interleukin-2 and interleukin 1-12. Blood 83(5):1323-1328, 1994.
-
27) Soiffer RJ, Robertson MJ, Murray C et al.:Interleukin-12augments cytolytic activity of peripheral blood lymphocytes from patients with hematologic and solid malignancies. Blood 82:2790-2796, 1993.
-
28) Andrews JV, Schoof DD, Bertagnolli MM et al.:Immunomodulatory effects of interleukin-12 on human tumor-infiltrating lymphocytes. J. Immunother. 14:1-10, 1993.
-
29) Tahara H, Zeh HJ 3rd, Storkus WJ et al.:Fibroblasts genetically engineered to secrete interleukin l2 cansuppress tumor growth and induce antitumor immunity to a murine melanoma in vivo. Cancer Res. 54:182-189, 1994.
-
33) Nastala CL, Edington HD, McKinney TG et al.:Recombinant IL12 administration induces tumor regression in association with IFN-gamma production. J. Immunol. 153:1697-1706, 1994.
-
37) Fallarino F, Uyttenhove C, Boon T et al:Endogenous IL-12 is necessary for rejection of P815 tumor variants in vivo. J. Immunol. 156:1095-1100, 1996.
-
43) Yao L, Pike SE, Setsuda J et al:Effective targeting oftumor vasculature by the angiogenesis inhibitorsvasostatin and interleukin-12. Blood 96:1900-1905, 2000.
-
44) Gee MS, Saunders HM, Lee JC et al:Dopplerultrasound imaging detects changes in tumorperfusion during antivascular therapy associated withvascular anatomic alterations. Cancer Res. 61:2974-2982, 2001.
-
48) Uekusa Y, Yu WG, Mukai T et al.:Apivotal role forCC chemokine receptor 5 in T-cell migration totumor sites induced by interleukin 12 treatment intumor-bearing mice. Cancer Res. 62:3751-3758, 2002.
-
52) Scharton-Kersten T, Afonso LC, Wysocka M et al.:IL-12 is required for natural killer cell activation andsubsequent T helper l cell development inexperimental leishmaniasis. J. Immunol. 154:5320-5330, 1995.
-
53) Gazzinelli RT, Wysocka M, Hayashi S et al.:Parasiteinduced IL-12 stimulates early IFN-gammasynthesis and resistance during acute infection with Toxoplasmagondii. J. Immunol. 153:2533-2543, 1994.
-
54) Gazzinelli RT, Bala S, Stevens R et al:HIV infectionsuppresses type 1 lymphokine and IL-12 responses to Toxoplasma gondii but faiIs to inhibit the synthesis of other parasite-induced monokines. J. Immunol 155:1565-1574, 1995.
-
55) Stevenson MM, Tam MF, Wolf SF et al.:IL-12-induced protection against blood-stage Plasmodiumchabaudi AS requires IFN-gamma and TNF-alphaand occurs via a nitric oxide-dependent mechanism. J. Immunol. 155:2545-2556, 1995.
-
57) King CL, Hakimi J, Shata MT et al.:IL-12 regulationof parasite antigen-driven IgE production in humanhelminth infections. J. Immunol. 155:454-461, 1995.
-
58) Orange JS, Wolf SF, Biron CA:Effects of IL-120n the response and susceptibility to experimental viral infections. J. Immunol. 152:1253-1264, 1994.
-
61) Schijns VE, Haagmans BL, Horzinek MC:IL12 stimulates an antiviral type 1 cytokine response butlacks adjuvant activity in IFN-gamma-receptordeficient mice. J. Immunol. 155:2525-2532, 1995.
-
67) Tripp CS, Kanagawa O, Unanue ER:Secondary response to Listeria infection requires IFN-gamma but is partially independent of IL-12. J. Immunol 155:3427-3432, 1995.
-
68) Sieling PA, Wang XH, Gately MK et al.:IL-12 regulates T helper type 1 cytokine responses in human infectious disease. J. Immunol. 153:3639-3647, 1994.
-
69) Flynn JL, Goldstein MM, Triebold KJ et al.:IL-12 increases resistance of BALB/c mice to Mycobacterium tuberculosisinfection. J. Immmol. 155:2515-2524, 1995.
-
71) Castro AG, Silva RA, Appelberg R:Endogenously produced IL-12 is required for the induction of protective T cells during mycobacterizemavium infections in mice. J. Immunol. 155:2013-2019, 1995.
-
74) Zhan Y, Cheers C:Endogenous interleukin-12 is involved in resistance to Brucella abortus infection. Infect. Immun. 63:1387-1390, 1995.
-
75) Seder RA, KeIsall BL, Jankovic D:Differential roles for IL-12 in the maintenance of immune responses in infectious versus autoimmune disease. J. Immunol. 157:2745-2748, 1996.
P.218 掲載の参考文献
-
5) Minty A, Asselin S, Bensussan A et al.:The related cytokines interleukin-13 and interleukin-4 are distinguished by differentiai production and differential effects on T lymphocytes. Eur. Cytokine Netw. 8:203-213, 1997.
-
7) Moy FJ, Diblasio E, Wilhelm J et al.:Solution structure of human IL-13 and implicatiorl for receptor binding. J. Mol. Biol. 310:219-230, 2001.
-
13) lzuhara K, Umeshita-Suyama R, Akaiwa M et al:Recent advances in understanding how interleukin-13 signaIs are involved in the pathogenesis of bronchial asthma. Arch. Immunol. Ther. Exp. 48:505-512, 2000.
-
15) Mohrs M, Ledermann B, K6hler G et al.:Differences between IL-4-and IL-4 receptora-deficient mice in chronic leishmaniasis reveal a protective role for IL-13receptor signaling. J. Immunol. 162:7302-7308, 1999.
-
19) Umeshita-Suyama R, Sugimoto R, Akaiwa M et al.:Characterization of IL-4 and IL-13 signaIs dependenton the human IL-13 receptorachain 1:redundancy of requirement of tyrosine residue for STAT 3activation. Int. Immunol. 12:1499-1509, 2000.
-
24) Zheng T, Zhu Z, Liu W et al.:Cytokine regulation of IL-13Rα2 and IL-13Rα1 in vivo and in vitro. J. Allergy Clin. Immunol 111:720-728, 2003.
-
27) WilIs-Karp M, Chiaramonte M:Interleukin-13 inasthma. Curr. Opin. Pulm. Med. 9:21-27, 2003.
-
28) Woerly G, Lacy P, Younes AB et al.:Human eosinophiIsexpress and release IL-13 following CD28-dependentactivation. J. Leukocyte Biol 72:769-779, 2002,
-
31) Das J, Chen CH, Yang L et al:Acritical role for NF-κB in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat. Immunol. 2:45-50, 2001.
-
35) Wen FQ, Kohyama T, Liu X et al.:Interleukin-4-and interleukin-13-enhanced transforming growth factor-B2 production in cultured human bronchial epithelial cells is attenuated by interferon-γ. Am. J. Respir. Cell Mol. Biol. 26:484-490, 2002.
-
39) Hoeck J, Woisetschlager M:STAT6 mediates eotaxin-lexpression in IL-40r TNF-α-induced fibroblasts. J. Immunol 166:4507-4515, 2001.
-
46) Bancroft AJ, McKenzie ANJ, Grencis RK:Acritical role for IL-13 in resistence to intestinal nematode infection. J. Immunol. 160:3453-3461, 1998.
-
48) WilIs-Karp M, Luyimbazi J, Xu X et al.:Interleukin-13:central mediator of allergic asthma. Science 282:2258-2261, 1998.
-
51) WilIs-Karp M:IL-12/IL-13 axis in allergic asthma. J. Allergy Clin. Immunol. 107:9-18, 2001.
-
56) Husain SR, Puri RK:Interleukin-13 receptor-directed cytotoxin for malignant glioma therapy:from bench to bedside. J. Neurooncol 65:37-48, 2003.
P.229 掲載の参考文献
-
15) Nishimura H, Washizu J, Nakamura N et al.:Translational efficiency is up-regulated by alternative exon in murine IL-15 mRNA. J. Immunol 160:936-942, 1998.
-
16) Bamford RN, DeFilippis AP, Azimi N et al.:The 5'untranslated region, signal peptide, and the coding sequence of the carboxyl terminus of IL-15 participate in its multifaceted translational control. J. Immunol 160:4418-4426, 1998.
-
17) Onu A, Pohl T, Krause H, Bulfone-Paus S:Regulation of IL-15 secretion via the leader peptide of two IL-15 isoforms. J. Immunol. 158:255-262, 1997.
-
19) Washizu J, Nishimura H, Nakamura N et al.:NF-κB binding site is essential for transcriptional activation of IL-15. Immunogenetics 48:1-7, 1997.
-
21) Bamford RN, DeFilippis AP, Azimi N et al, :The 5'untranslated region, signal peptide, and the coding sequence of the carboxyl terminus of IL-15 participate in its multifaceted translational control. J. Immunol. 160:4418-4426, 1998.
-
41) Ishimitsu R, Nishimura H, Yajima T et al.:Overexpression of interleukin-15 in vivo enhances Tcl response which inhibits allergic inflammation in a murine model of asthma. J. Immunol 166:1991-2001.
-
44) Mclnnes IB, al-Mughales J, Field M et al.:The role of interleukin-15 in T-cell migration and activation in rheumatoid arthritis. Nat. Med. 2:175-182, 1996.
P.239 掲載の参考文献
-
1) Center DM, Cruikshank WW:Modulation of lymphocyte migration by human lymphokines, 1. Identification and characterization of chemoattractant activity for lymphocytes from mitogen-stimulated mononuclear cells. J. Immunol. 128:2563-2568, 1982.
-
2) Cruikshank WW, Center DM:Modulation of lymphocyte migration by human lymphokines. II. Purification of lymphocyte chemoattractant factor (LCF) . J. Immunol 128:2569-2574, 1982.
-
6) Nicoll J, Cruikshank WW, Brazer W et al.:Identification of domains in IL-16 critical for biological activity. J. Immunol. 163:1827-1832, 1999.
-
7) Laberge S, Cruikshank WW, Kornfeld H et al.:Chemoattractant factor from CD8+ T cells is independent of transcription and translation evidence for constitutive protein synthesis and storage. J. Immunol. 155:2902-2906, 1995.
-
8) Laberge S, Cruikshank WW, Beer DJ et al.:Secretion of IL-16 (lymphocyte chemoattractant factor) from serotonin-stimulated CD8+ T cells 71n仇汐o. J. Immunol. 156:310-315, 1996.
-
10) Chupp GL, Wright EA, Wu D et al.:Tissue and T cell distribution of precursor and mature IL-16. J. Immunol. 161:3114-3119, 1998.
-
11) Lim KG, Wan HC, Bozza PT et al.:Human eosinophiIs elaborate IL-16 (lymphocyte chemoattractant factor) and RANTES. J. Immunol. 156:2566-2570, 1996.
-
13) Rumsaeng V, Cruikshank WW, Foster B et al:Human mast cells produce the CD4+ T lymphocyte chemoattractant factor, IL-16. J. Immunol. 159:2904-2910, 1997.
-
14) Kaser A, Durlzondorfer S, Offner FA et al.:Arole for IL-16 in the cross-talk between dendritic cells and T cells. J. Immunol. 163:3232-3238, 1999.
-
15) Juang T, Shauer U, Hensset C et al.:Detection of intracellular cytokines by flow cytometry. J. Immunol. Methods 159:197-205, 1993.
-
16) Wu D, Zhang Y, Parada NA et al.:Processing and release of IL-16 from CD4+ but not CD8+ T cells is activation dependent. J. Immunol. 162:1287-1293, 1999.
-
17) Cruikshank WW, Greenstein JL, Theodore AC et al.:Lymphocyte chemoattractant factor induces CD4-dependent intracytoplasmic signaling in lymphocytes. J. Immunol. 146:2928-2934, 1991.
-
18) Parada NA, Center DM, Kornfeld H et al.:Synergistic activation of CD4+ T cells by IL-16 and IL-2. J. Immunol 160:2115-2120, 1998.
-
19) Theodore AC, Center DM, Nicoll J et al.:CD41igand IL-16 inhibits the mixed lymphocyte reaction. J. Immunol 157:1958-1964, 1996.
-
21) Maciaszek JW, Parada NA, Cruikshank WW et al.:IL-16represses HIV-1 promoter activity. J. Immunol 158:5-8, 1997.
-
24) Parrorichi P, Romagnani P, Annunziato F et al.:Type lT-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn's disease. Am. J, Pathol. 150:823-832, 1997.
-
25) Pizarro TT, Michie MH, Bentz M et al.:IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn's disease:expression and localization in intestinal mucosal cells. J. Immmul. 162:6829-6835, 1999.
-
26) Raab Y, Fredens K, Gerdin B et al.:Eosinophil activation in ulcerative colitis. studies on mucosal release and localization of eosinophil granule constitutents. Dig. Dis. Sci. 43:1061-1070, 1998.
-
28) Wierenga EA, Snock M, de Groot GC et al.:Evidence for compartmentalization of functional subsets of CD4 Tlymphocytes in atopic patients. J. Immunol 144:4651-4656, 1990.
-
29) Reich K, Heine A, Hugo S et al.:Engagement of the FcεRI stimulates the production of IL-16 in Langerhans cell-like dendritic cells. J. Immunol. 167:6321-6329, 2001.
-
31) Hessel EM, Cruikshank WW, van Ark I et al:Involvement of IL-16 in the induction of airway hyperresponsiveness and up-regulation of IgE in a murine model of allergic asthma. J. Immunol. 160:2998-3005, 1998.
P.248 掲載の参考文献
-
4) Teunissen MBM, Koomen CW, de Waal Malefyt R et al.:Interleukin-17 and interferon-γ synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J. Invest. Dermatol. 111:645-649, 1998.
-
5) Infante-Duarte C, Horton HE, Byrne MC et al.:Microbial lipopeptides induce the production of IL-17. J. Immunol. 165:6107-6115, 2000.
-
9) Javanovic DV, Di Battista JA, Martel-Pelletier J et al.:IL-17 stimulates the production and expression of proinflammatory cytokines, IL-1β and TNF-α, by human macrophages. J. Immunol 160:3513-3521, 1998.
-
10) Laan M, Cui ZH, Hoshino H et al.:Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways, J, Immunol. 162:2347-2352, 1999.
-
11) Schwarzenberger P, La Russa V, Miller A et al.:IL-17 stimulates granulopoiesis in mice:Use of an alternate, novel gene therapy-derived method for in vitro elevation of cytokines. J. Immunol. 161:6383-6389, 1998.
-
16) Van Kooten C, Boonstra JG, Paape ME et al.:Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J. Am. Soc. Nephrol. 9:1526-1534, 1998.
-
20) Gravallese EM, Harada Y, Wang JT et al.:Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am. J. Pathol. 152:943-951, 1998.
-
21) Jimi E, Akiyama S, Tsurukai T et al.:Osteoclast differentiation factor act as a multifunctional regulator in murine osteoclast differentiation and function. J. Immunol. 163:434-449, 1999.
-
28) Schlaak JF, Buslau M, Jochuin W et al.:T cells involved in psoriasis vulgaris belong to the Thl subset. J. Invest. Dermatol. 126:351-355, 1990.
-
29) Fierlbeck G, Rassner G, Muller C:Psoriasis induced at the injection site of recombinant interferon gamma. Arch. Dermatol. 102:145-149, 1994.
-
32) Albanesi C, Cavani A, Girolomoni G et al.:IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes:synergistic or antagonist effects with IFN-γand TNF-a. J. Immunol. 162:494-502, 1999.
-
33) Niemialtowski MG, Rouse BT:Predominance of Thl cells in ocular tissue during herpetic stromal keratitis. J. Immunol. 149:3035-3041, 1992.
-
35) Thomas J, Gangappa S, Kanangat S et al.:On the essential involvement of neutrophiIs in the immunopathologic disease:Herpetic stromal keratitis. J. Immunol 158:1383-1390, 1997.
P.265 掲載の参考文献
-
2) Medzhitov R, Preston-Hurburt P, Janeway CAJr:Innage immunity:the virtues of a nonclonal system of recognition. Cell 91:295-298, 1998.
-
4) O'Neill LAJ, Dinarello CA:The IL-1 receptor/toll-like receptor superfamily:critical receptors for inflammation and host defense. Immunol. Today 21:206-209, 2000.
-
7) Okamura H, Tsutsui H, Komatsu T et al.:Cloning of a new cytokine that induces IFN-γ production by Tcells. Nature 378:88-91, 1995.
-
12) Gu Y, Kuida K, Tsutsui H et al.:Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science 275:206-209, 1997.
-
18) Hoshino K, Tsutsui H, Kawai T et al.:Generation of IL-18 receptor-deficient mice:evidence for IL-1 receptor-related protein as an essential IL-18 binding receptor. J. Immunol. 162:5041-5044, 1999.
-
21) Suzuki N, Chen N-J, Miller DG et al.:IRAK-4 is essential for interleukin-18-mediated natural killer and T helper cell type 1 response. J. Immunol. 170:4031-4035, 2003.
-
22) Suzuki N, Suzuki S, Duncan GS et al.:Severe impairment of interleukin-1 arld Toll-like receptor signaling in mice lacking IRAK-4. Nature 416:750-754, 2002.
-
34) aeary AM, Tu W, Enright A et al:Impaired accumulation and fuction of memoryh CD4 T cells in human IL-12 receptorBldeficiency. J. Immunol. 170:597-603, 2003.
-
35) Yang J, Zhu H, Murphy TL et al.:1L18-stimulated GADD45Brequired in cytokine-induced, but not TCR-induced, IFN-γproduction. Nat. Immunol. 2:157-164, 2001.
-
36) Lu B, Yu H, Chow C et al.:GADD45γmediates the activation of the p38 and JNK MAP kinase pathways and cytokine production in effector Thl cells. Immunity 14:583-590, 2001.
-
40) Yoshimoto T, Nim B, Stlgimoto T:Nonredundant roles for CDld-restricted natural killer T cells and conventional CD4斗Tcells in the induction of immunoglobulin E antibodies in response to interleukin-18 treatment of mice. J. Exp. Med. 197:997-1005, 2003.
-
43) Neighbors M, Xu X, Barrat F et al.:ACritical role for interleukin 18 in primary and memory effector responses to Listeria monocytoenes that extends beyond its effects on interferon γ production. J. Exp. Med. 194:343-354, 2001.
-
44) Kanai T, Watanabe M, Akazawa A et al.:Macrophage-derived IL-18-mediated intestinal inflammation in the murine model of Crohn's disease. Gastroenteorol 121:875-888, 2001.
-
47) Whitan SC, Ravisakar P, Daugherty A:Interleukin-18 enhances atherosclerosis in apolipoprotein E -/- mice through release of interferon-γ. Cir. Res. 90:e34-e38, 2002.
-
48) Jawien ER, Rudling M, Ljunggren HG et al.:Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc. Res. 591234-240, 2003.
-
51) Hanifi-Moghaddam P, Schloot NC, Kappler S et al.:An association of autoantibody status and serum cytokinelevels in tyep l diabetes. Diabetes 52:1137-1142, 2003.
-
55) Chikano S, Sawada K. Shimoyama T et al.:IL-18 and IL-12 induce intestinal inflammation and fatty liver in mice in an IFN-γ-dependent manner. Gut 47:779-786, 2000
P.277 掲載の参考文献
-
2) Nagano Y, Kojima Y:Inhibition de I'infection vaccinale par le virus homologue. C. R. Seances Soc. Biol Fil. 152:1627-1630, 1958.
-
3) Davis G, Zhou R, Pin J et al.:Interferon alfa-2b alone or in combination with ribavirin for the treatment of relapse of chronic hepatitis C. International Hepatitis Interventional Therapy Group. N. Eng1. J. Med. 339:1493-1499, 1998.
-
6) Bevialacqua PC, Cech T:Minor groove recognition of double stranded RNA-binding domain from the RNA activated protein kinase PKR. Biochemistry 35:9983-9994, 1996.
-
7) Manchie L, Green SR, Schmedt C et al.:Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol. Cell, Biol. 12:5238-5248, 1992.
-
11) Biron CA, Sen GC:Interferons and other cytokines. (eds. Knipe DM, Howley PM, Griffin DE, Martin M, Roizman B, Straus SE) , Fields virology, 4th ed, Lippincott-Raven, Philadelphia, Pa. , 2001, p321-351.
-
14) Leonard GT, Sen GC:Restoration of interferorl responses of adenovirus EIA-expressing HT1080 ell lines by overexpression of p48 proteinJ. Virol. 71:5095-5101, 1997.
-
21) Samuel CE:The elF-2aprotein kinases, regulators of translation in eukaryotes from yeasts to humans. J. Biol Chem. 268:7603-7606, 1993.
-
23) Mathews MB, Shenk T:Adenovirus virus-associated RNA and translational control. J. Virol. 65:5657-5662, 1991.
-
24) Black TL, Barber GN, Katze MG:Degradation of the interferon-induced 68, 000 Mr protein kinase by poliovirus requires RNA. J. Virol. 67:791-800, 1993.
-
33) Takaoka A, Hayakawa S, Yanai H et al.:Integration of interferon-a/Bsignalling to p53 responses in tumour suppression and antiviral defence. Nature 424:516-523, 2003.
-
45) Tanaka T, Yoshioka J, Abe A et al.:An application of new algorithm for efficacy prediction of IFN-ribavirin combination therapy using a low-density cDNA microarray. 11th Viral Hepatitis and Liver Disease, 2003.
-
47) Myron JT, Rajender R, William ML et al.:Treatment of chronic hepatitis C virus with consensus interferon:A multicenter, randomized, controlled trial. Hepatology 26:747-754, 1997.
-
48) Jessner W, Stauber R, Hackl F et al:Ealy viral kinetics on treatment with pegylated interferon-α-2a in chronic hepatitis C virus genotype 1 infection. J. Viral Hepatitis 10:37-42, 2003.
P.297 掲載の参考文献
-
3) 山崎正利:tumor necrosis factorと炎症サーキット. 炎症 10:163-170, 1990.
-
5) Schlondorff J, Blobel CP:Metalloprotease-disintegrins:modular proteins capable of promoting cell-cell interactions and triggering signaIs by protein-ectodomain shedding. J. Cell Sci. 112:3603-3617, 1999.
-
6) Aggarwal BB:Structure, Mechanism of Action, Role in Disease and Therapy. (eds. Bonavida G, Granger G) , Karger, Base1, 1990, p49-54.
-
10) Lopez-Fraga M, Fernandez R et al.:Biologically active APRIL is secreted followlng intracellular processing in the Golgi apparatus by furin convertase. EMBO Rep. 2:945-951, 2001.
-
12) 佐藤元信, 山崎正利:腫瘍壊死因子(TNF-a)による生体防御. Biotherapy 7:1-12, 1993.
-
14) Banner DW, D'Arcy A et al.:Crystal structure of the soluble human 55kd TNF receptor-human TNFβ complex:implications for TNF receptor action. Cell. 73:431-435, 1993.
-
19) Chung JY, Park YC, Ye H, Wu H:All TRAFs are not created equal:common and distinct molecular mechanisms of TRAF-mediated signal transduction. J. Cell Sci. 115:679-688, 2002.
-
25) Yao J, Mackman N, Edgington TS, Fan S:Lipopolysaccharide induction of the tumor necrosis factor-α promoter in human monocytic cells. Regulation by Egr-1, c-Jun, and NF-κb transcription factors. J. Biol. Chem. 272:17795-17801, 1997.
-
26) Quasney MW, Zhang Q, Sargent S et al.:Increased frequency of the tumor necrosis factor-α-308 A allele in adults with human immunodeficiency virus dementia. Ann. Neurol 50:157-162, 2001.
-
27) RuuIs SR, Sedgwick JD:Unlinking tumor necrosis factor biology from the major histocompatibility complex:lessons from human genetics and animal modeIs. Am. J. Hum. Genet. 65:294-301, 1999.
-
30) Henricson BE, Benjamin WR, Vogel SN:Differential cytokine induction by doses of lipopolysaccharide and monophosphoryl lipid A that result in equivalent early endotoxin tolerance. Infect. Immun. 58:2429-2437, 1990.
-
33) Lee EG, Boone DL, Chai S et al.:Failure to regulate TNF-induced NF-κBand cell death responses in A20-deficient mice. Science 289:2350-2354, 2000.
-
34) Sosic D, Richardson JA, Yu K et al.:Twist regulates cytokine gene expression through a negative feedback loop that represses NF-κBactivity. OIson EN. Cell 112:169-180, 2003.
-
41) Alimzhanov MB, Kuprash DV, Kosco-Vilbois MH et al.:Abnormal development of secondary lymphoid tissues in lymphotoxin β-deficient mice. Proc. Natl. Acad. Sci. USA 94:9302-9307, 1997.
-
46) Flynn RM, Palladino MA:TNF and TGF-B:The opposite sides of the avenue? Tumor Necrosis Factors. (ed. Beutler B) , Raven Press, New York, 1992, p131-144.
-
48) 小川道雄:侵襲に対する生体反応の分子機構. 医学のあゆみ 205:535-540, 2003.
-
50) Satoh M, Tsurumaki K, Kagehara H, Yamazaki M:Induction of intratumoral tumor necrosis factor by a synthetic lipid A analog, ONO-4007 with less tolerance in repeated administration and its implication in potent antitumor effects with low toxicity. Cancer Immun. Immunother. 50:653-662, 2002.
-
51) Long R, Gardam M:Tumour necrosis factor-a inhibitors and the reactivation of latent tuberculosis infection. Canad. Med. Assoc. J. 168:1153-1156, 2003.
P.303 掲載の参考文献
-
4) Daopin S, Piez KA, Ogawa Y, Davies DR:Crystal structure of transforming growth factor-β2. An unusual fold for the superfamily. Scierlce 257:369-373, 1992.
-
6) Lin HY, Wang X-F, Ng-Eaton E, Weinberg RA Lodish HF:Expression cloning of the TGF-β type II receptor, a functional transmembrane serine/ threonine kinase. Cell 68:775-785, 1992.
-
7) Franz6n P, ten Dijke P, Ichijo H, Yamashita H, Schulz P, Heldin C-H, Miyazono K:Cloning of a TGF-B type I receptor that forms a heteromeric complex with the TGF-β type II receptor. Cell 75:781-792, 1993.
-
8) Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M, Wang X-F, Massague J:TGFβ signaIs through a heteromeric protein kinase receptor complex. Cell 71:1003-1014, 1992.
-
11) Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K:Two major Smad pathways in TGF-β superfamny signalling. Genes Cells 7:1191-1204, 2002.
-
12) Miyazono K, Ichijo H, Heldin C-H:Transforming growth Factor-β:Latent forms, binding proteins and receptors. Growth Factors 8:11-22, 1993.
-
13) McAllister KA, Gro99 KM, Johnson Dw, Gallione CJ, Baldwin MA, Jackson CE, Helmbold EA, Markel DS, McKinnon WC, Murrell J, McCormick MK, Perical-Vance MA, Heutink P, Oostra BA, Haitjema T, Westerman CJJ, Porteous ME, Guttmacher AE, Letarte M, Marchuk DA:Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type I. Nat. Genet. 8:345-351, 1994.
-
15) Kanzaki T, Olofsson A, Moren A, Wernstedt C, Hellman U, Miyazono K, Cleasson-WeIsh L, Heldin C-H:TGF-β1 binding protein:Acomporlent of the large latent complex of TGF-B1with multiple repeat sequences. Cell 61:1051-1061, 1990.
-
17) Massague J:The transforming growth factor-β family. Annu. Rev. Cell Biol 6:597-641, 1990.
-
19) Piek E, Moustakas A, Kurisaki A et al.:TGF-β type I receptor/ALK-5 and Smad proteins mediate epitheli. al to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J. Cell Sci. 112:4557-4568, 1999.
-
20) Shull MM, Ormsboy I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, Annunziata N, Doetschman T:Targeted disruption of the mouse transforming growth factor-Blgene results in multifocal inflammatory disease. Nature 359:693-699, 1992.
-
21) Sanford LP, Ormsby I, Gittenberger-de Groot AC et al.:TGFB 2 knockout mice have multiple developmental defects that are non-overlapping with other TGFBknockout phenotypes. Development 124:2659-2670, 1997.
-
22) Proetzel G, Pawlowski SA, Wiles MV et al.:Transforming growth factor-β3 is required forsecondary palate fusion. Nat. Genet. 11:409-414, 1995.
-
24) Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, VogeIstein B, Brattain M, WilIson JKV:Inactivation of the type II TGFB receptor in colon cancer cells with microsatellite instability. Science 268:1336-1338, 1995.
-
25) Hahn SA, Schutte M, Hoque ATMS, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE:DPC4, a candidate tumor suppressor gene at human chromosome 188q21. 1. Science 271:350-353, 1996.
-
27) Lane KB, Machado RD, Pauciulo MW et al:Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. Nat. Genet. 26:81-84, 2000.
P.313 掲載の参考文献
-
1) Nicola NA, Metcalf D, Johnson GR et al.:Separation of functionally distinct human granulocyte-macrophage colony-stimulating factors. Blood 54:614-627, 1979.
-
2) Nicola NA, Metcalf D, Matsumoto M et al.:Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells:identification as granulocyte colony-stimulating factor (G-CSF) . J. Biol. Chem, 258:9017-9023, 1983.
-
3) Asano S, Urabe A, Okabe T et al.:Demonstration ofgranulopoietic factor(s) in the plasma of nude mice transplanted with a human lung cancer and in the tumor tissues. Blood 49:845-852, 1977.
-
7) Lieshke GW, Burgess AW:Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor (1) . N. Eng. J. Med. 327:28-35, 1992.
-
8) Lieshke GW, Burgess AW:Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor (2) . N. Eng. J. Med. 327:99-106, 1992.
-
10) Oheda M, Hasegawa N Hattori N et al.:O-linked sugar chain of human granulocyte colony-stimulating factor protects it against polymerization and denaturation allowing it to retain its biological activity. J. Biol Chem. 265:11432-11435, 1990.
-
11) Kishita M, Motojima H, Oheda M et al.:Stability of granulocyte colony-stimulating factor (G-CSF) in serum. Clinical Report 26:221-226, 1992.
-
18) Matsuda S, Shirafuj i N, Asano S:Human granulocyte colony-stimulating factor specifically binds to murine myeloblastic NFS60 cells and activates their guanine triphosphate binding proteinsu/adenylate cyclase system. Blood 74:2343-2348, 1989.
-
20) Tweardy DJ, Wright TM, Zieglar SE et al.:Granulocyte colony-stimulating factor rapidly activates a distinct ATAT-like protein in normal myeloid cells. Blood 86:4409, 1995.
-
21) Lieschke GJ, Grail D, Hodgson G et al.:Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granuiocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84:1737-1746, 1994.
-
22) Watari K, Asano S, Shirajuji N et al:Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders as astimated by enzyme immunoassay. Blood 73:117-122, 1989.
-
23) World Health Organization (WHO) BS/92. 1711, International collaborative study for the proposedinternational standards for granulocyte macrophagecolony stimulating factor and granulocyte-colonystimulating factor. 1992.
-
25) Takahashi S, Okamoto S, Shirafuj i N et al.:Recombinant human glycosylated granulocyte colonystimulating factor (rtG-CSF)-combined regimen forallogeneic bone marrow transplantation in refractoryacute myeloid leukemia. BMT 13:239-245, 1994.
P.324 掲載の参考文献
-
2) Miyazaki H, Horie K, Shimada Y et al.:A simple and quantitative liquid culture system to measure megakaryocyte growth using highly purified CFU-MK. Exp. Hematol. 23:1224-1228, 1995.
-
15) Miyakawa Y, Oda A, Druker BJ et al.:Recombinant thrombopoietin induces rapid protein tyrosine phosphorylation of Janus kinase 2 and Shc in human blood platelets. Blood 86:23-27, 1995.
-
16) Miyakawa Y, Oda A, Druker BJ et al.:Thrombopoietin induces tyrosine phosphorylation of Stat 3 and Stat 5 in human blood platelets. Blood 87:439-446, 1996.
-
17) Komatsu N, Kunitama M, Yamada M et al, :Establishment and characterization of the thrombopoietir1-dependent megakaryocytic cell line, UT-7/TPO. Blood 87:4552-4560, 1996.
-
22) Stoffel R, Wiestner A, Skoda RC:Thrombopoietin in thrombocytopenic mice:evidence against regulation at the mRNA level and for a direct regulatory role of platelets. Blood 87:567-573, 1996.
-
23) Sasaki Y, Takahashi T, Miyazaki H et al.:Production of thrombopoietin by human carcinomas and its novel isoforms. Blood 94:1952-1960, 1999.
-
24) Nomura S, Ogami K, Kawamura K et al:Cellular localization of thrombopoietin mRNA in the liver by in situ hybridization. Exp. Hematol. 25:565-572, 1997.
-
25) Ulich TR, del Castillo J, Yin S et al.:Megakaryocyte growth and development factor ameliorates carboplatin-induced thrombocytopenia in mice. Blood 86:971-976, 1995.
-
29) Fielder PJ, Gurney AL, Stefanich E et al.:Regulation of thrombopoietin levels by c-mpl-mediated binding to platelets. Blood 87:2154-2161, 1996.
-
31) Horikawa Y, Matsumura I, Hashimoto K et al.:Markedly reduced expression of platelet c-mpl receptor in essential thrombocythemia. Blood 90:4031-4038, 1997.
-
35) Cazzola M, Skoda RC:Translational pathophysiology:a novel molecular mechanism of human disease. Blood 95:3280-3288, 2000.
-
36) Kondo T, Okabe M, Sanada M et al.:Familial essential thrombocythemia associated with one-base deletion in the 5-'untranslated region of the thrombopoietin gene. Blood 92:1091-1096, 1998.
-
38) Shiozaki H, Miyawaki S, Kuwaki T et al:Autoantibodies neutralizing thrombopoietin in a patient with amegakaryocytic thrombocytopenic purpura. Blood 95:2187-2188, 2000.
-
40) Kato T, Horie K, Hagiwara T et al:Gpllb/IIIa+ subpopulation of rat megakaryocyte progenitor cells exhibits high responsiveness to hurnan thrombopoietin (TPO) . Exp. Hematol. 24:1209-1214, 1996.
-
42) Hagiwara T, Kodama I, Horie K et al:Proliferative properties of human umbilical cord blood megakaryocyte progenitor cells to human thrombopoietin. Exp. Hematol. 26:228-235, 1998.
-
45) Horie K, Miyazaki H, Hagiwara T et al.:Action of thrombopoietin at the megakaryocyte progenitor level is critical for the subsequent proplatelet production. Exp. Hematol. 25:169-176, 1997. Erratum in:Exp. Hematol 25:270, 1997.
-
46) Kobayashi M, LaverJH, Kato T et al.:Thrombopoietin supports proliferation of human primitive hematopoietic ceIs in synergy with steel factor and/or interleukin 3. Blood 88:429-436, 1996.
-
48) Solar GP, Kerr WG, Zeigler FC et al.:Role of c-mpl in early hematopoiesis. Blood 92:4-10, 1998.
-
50) Kobayashi M, Laver JH, Kato T et al:Recombinant human thrombopoietin (Mpl ligand) enhances proliferation of erythroid progenitors. Blood 86:2494-2499, 1995.
-
51) Matsumura I, Kanakura Y, Kato T et al:Growth response of acute myeloblastic leukemia cells to recombinant human thrombopoietin. Blood 86:703-709, 1995.
-
53) Oda A, Miyakawa Y, Drucker BJ et al.:Thrombopoietin primes human platelet aggregation induced by shear stress and by multiple agonists. Blood 87:4664-4670, 1996
-
55) Bunting S, Widmer R, Lipari T et al.:Normal platelets and megakaryocytes are produced in vivo in the absence of thrombopoietin. Blood 90:3423-3429, 1997.
-
58) Hokom MM, Lacey D, Kinstler OB et al.:Pegylatedmegakaryocyte growth and development factorabrogates the lethal thrombocytopenia associatedwith carboplatin and irradiation in mice. Blood 86:4486-4492, 1995.
-
59) Akahori H, Shibuya K, Ozai M et al:Effects of pegylated recombinant human megakaryocyte growth and development factor on thrombocytopenia inducedby a new myelosuppressive chemotherapy regimen inmice. Stem CelIs 14:678-689, 1996.
-
61) Shibuya K, Akahori H, Takahashi K et al.:Multilineage hematopoietic recovery by a single injection of pegylated recombinant human megakaryocyte growth and development factor in myelosuppressed mice. Blood 91:37-45, 1998.
-
65) Archimbaud E, Ottmann OG, Yin JA et al.:A randomized, double-blind, placebo-controlled study with pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) as an adjunct to chemotherapy for adults with de novo acute myeloid leukemia. Blood 94:3694-3701, 1999.
P.333 掲載の参考文献
-
1) 浦部晶夫:エリスロポエチン. ライフ・サイエンス, 1991.
-
2) Carnot P, Deflandre C:Sur l'activite hemopoietique du serum au cours de la regeneration du sang. Compt. Rend. Acad. Sci. 143:384-386, 1906.
-
3) Carnot P, Deflandre C:Sur l'activite hemopoietique des differents organes au cours de la regeneration du sang. Compt. Rend. Acad. Sci. 143:432-435, 1906.
-
4) Erslev A:Humoral regulation of red cell production. Blood 8:349-357, 1953.
-
5) 浦部贔夫:血液細胞の分化と増殖. メジカルビュー, 1991.
-
7) Miyake T et al.:Purification of human erythropoietin. J. Biol Chem. 252:5558-5564, 1977.
-
8) 宮家隆次:エリスロポエチンの精製. 血液・免疫・腫瘍 8:67-69, 2003.
-
13) D'Andrea AD et al.:The cytoplasmic region of the erythropoietin receptor contains nonoverlapping positive and negative growth-regulatory dornains. Mol. Cell. Biol. 11:1980-1987, 1991.
-
15) 小松則夫:家族性多血症. 血液・腫瘍科 30:241- 246, 1995.
-
18) Gershon SK et al.:Pure red-cell aplasia and reconbinant erythropoietin. N. Engl. J. Med. 346:1584-1585, 2002,
P.342 掲載の参考文献
-
2) Kobayashi Y, Takahashi N:Regulatory mechanism of bone resorption:roles of bone remodeling-regulatory cytokines 'osteokines' in osteoclast differentiation and function. Nippon Rinsho 61:200-206, 2003.
-
8) The American Society for Bone and Mineral Research President's Committee on Nomenclature:Proposed standard nomenclature for new tumor necrosis factor family members involved in the regulation of bone resorption. J. Bone Miner. Res. 15:2293-2296, 2000.
-
36) Takayanagi H, Ogasawara K, Hida S et al.:T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 408:600-605, 2000.
-
38) Jimi E, Akiyama S, Tsurukai T et al:Osteoclast differentiation factor (ODF) acts as a multifunctional regulator in murine osteoclast differentiation and function. J. Immunol. 163:434-442, 1999.
-
45) Kotake S, Nanke Y, Ichikawa N et al.:Interferongamma producing human T cells directly induce osteoclastogenesis from huma monocytes via the expression of RANKL:possible role of Thl cells in bone resorption. First joint meeting of IBMS-JBMR. s157 abstract, 2003.
-
48) Kotake S, Schumacher HR Jr, Yarboro CH et al.:In vivo gene expression of type 1 and type 2 cytokines in synovial tissues from patients in early stages of rheumatoid, reactive, and undifferentiated arthritis. Proc. Assoc. Am. Physicians. 109:286-301, 1997.
-
51) 市川奈緒美, 小竹 茂, 南家由紀・他:可溶性RANKL とTNF-aは相乗的にヒト破骨細胞の形成を促進する. リウマチ 43:382(抄録), 2003.
ケモカイン受容体とそれらのリガンド
P.353 掲載の参考文献
-
9) Oppenheim JJ, Howard OMZ, Goetzel E:Chemotactic factors, neuropeptides, and other ligands for seven transmembrane receptors. Cytokine Reference Vol. 1 (ed. Oppenheim JJ, Feldman M) , Academic Press, San Diego, 2001, p985-1021.
-
12) Khandaker MH, Xu L, Rahimpour R et al.:CXCR1 and CXCR2 are rapidly down-modulated by bacterial endotoxin through a unique agonist-independent, tyrosine kinase-dependent rnechanism. J. Immunol. 161:1930-1938, 1998.
-
13) Asagoe K, Yamamoto K, Takahashi A et al.:Down-regulation of CXCR2 expression on human polymorphonuclear leukocytes by TNF-alpha. J. Immunol. 160:4518-4525, 1998.
-
16) Bron R, Klasse PJ, Wilkinson D:Promiscuous use of CC and CXC chemokine receptors in cel1-to-cell fusion mediated by a human immunodeficiency virus type 2 envelope protein. J. Virol 71:8405-8415, 1997.
P.360 掲載の参考文献
-
10) Liu MT, Armstrong D, Hamilton TA et al.:Expression of Mig (monokine induced by interferon-γ) is important in T lymphocyte recruitment and host defense following viral infection of the central nervous system. J. Immunol, 166:1790-1795, 2001.
-
19) Luster AD, Unkeless JC, Ravetch JV:γ-Interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 315:672-676, 1985.
-
21) Farber JM:Acollection of mRNA species that are inducible in the RAW264. 7 mouse macrophage cell line byγinterferon and other agents. Mol. Cell Biol 12:1535-1545, 1992.
-
23) Rani MRS, Foster, GR, Leung S et al.:Characterization ofB-Rl, a gene that is selectively induced by interferon β (IFN-β) compared with IFN-a. J. Biol Chem. 271:22878-22884, 1996.
-
26) Narumi S, Hamilton TA:Inducible expression of murine IP-10 mRNA varies with the state of macrophage inflammation activity. J. Immunol. 146:3038-3044, 1991.
-
27) Gasperini S, Matchi M, Calzetti F et al.:Gene expression and production of the monokine induced by IFN-γ (MIG) , IFN-inducible T cellachemoattractant (1-TAC) , and IFN-γ-inducible protein-10 (IP-10) chemokines by human neutrophiIs. J. Immunol. 162:4928-4937, 1999.
-
29) Amichay D, Gazzinelli RT, Karupiah G et al.:Genes for chemokines MuMig and Crg-2 are induced in protozoan and viral infections in response to IFN-γ with patterns of tissue expression that suggest nonredundant roles in vivo. J. Immunol 157:4511-4520, 1996.
-
30) Narumi S, Tominaga Y, Tamaru M et al:Expression of IFN-inducible protein-10 in chronic hepatitis. J. Immunol. 158:5536-5544, 1997.
-
32) Mohan K, Ding Z, Hanly J et al.:IFN-γ-inducible T cellachemoattractant is a potent stimulator of normal human blood T lymphocyte transendothelial migration:differential regulation by IFN-γand TNF-a. J. Immunol. 168:6420-6428, 2002.
-
34) Luster AD, Ravetch JV:Genomic characterization of a λ-interferon-inducible gene (IP-10) and identification of an interferon-inducible hypersensitive site. Mol. Cell. Biol 7:3723-3731, 1987.
-
35) Ohmori Y, Hamilton T A:Cooperative interaction between interferon (IFN) stimulus response eiement andκB sequence motifs controIs IFN-γ-and lipopoiysaccharide-stimulated transcription from the murine IP-10 promoter. J. Biol. Chem. 268:6677-6688, 1993.
-
36) Wright TM, Farber JM:5'Regulatory region of a novel cytokine gene mediates selective activation by interferonγ. J. Exp. Med. 173:417-422, 1991.
-
39) Majumder S, Zhou LZ-H, Chaturvedi P et al.:p48/ STAT-1a-containing complexes play a predominant role in induction of IFN-γ-inducible protein, 10 kDa (IP-10) by IFN-γalone or in synergy with TNFa. J. Immunol. 161:4736-4744, 1998.
-
40) Guyer NB, Severns CW, Wong P et al.:IFN-γinduces ap91/STATIa-related transcription factor with distinct activation and binding properties. J. Immunol 155:3472-3480, 1995.
-
41) Shuai K, Schindler C, Prezioso VR et al.:Activation of transcription by IFN-γ:tyrosine phosphorylation of a 91-kD DNA binding protein. Science 258:1808-1812, 1992.
-
42) Shuai K, Stark C, Kerr IM et al.:Asingle phosphotyrosine residue of Stat91 required for gene activation by interferon-γ. Science 261:1744-1746, 1993.
-
44) Horton MR, McKee CM, Bao C et al.:Hyaluronan fragments synergize with interferon-γto induce the C-X-Cchemokines Mig and interferon-γ-inducible protein-10 in mouse macrophages. J. Bio. Chem. 273:35088-35094, 1998.
-
45) Narumi S, Yoneyama H, Inadera H et al.:TNF-ais a potent inducer for IFN-inducible protein-10 in hepatocytes and unaffected by GM-CSF in vivo, in contrast to IL-1Band IFN-γ. Cytokine 12:1007-1016, 2000.
-
46) Hamilton N H R, Banyer J L, Hapel A J et al.:IFN-γregulates murine interferon-inducible T cell alphallines and during experimental autoimmuneencephalomyelitis (EAE) . Scand. J. Immunol. 55:171-177, 2002.
-
47) Gautam S, Tebo JM, Hamilton TA:IL-4 suppresses cytokine gene expression induced by IFN-γand/orIL-2 in murine peritoneal macrophages. J. Immunol. 148:1725-1730, 1992.
-
48) Deng W, Ohmori Y, Hamilton TA:Mechanisms of IL4-mediated suppression of IP-10 gene expression inmurine macrophages. J. Immunol. 153:2130-2136, 1994.
-
49) Ito S, Ansari P, Sakatsume M et al.:Interleukin-10 inhibits expression of both interferona-and interferonγ-induced genes by suppressing tyrosine phosphorylation of STAT1. Blood 93:1456-1463, 1999.
-
52) Finbloom DS, Larner AC, Nakagawa Y et al:Culture of human monocytes with granulocyte-macrophage colony-stimulating factor results in enhancement of IFN-γreceptors but suppression of IFN-γinduced expression of the gene IP-10. J. Immunol. 150:2383-2390, 1993.
-
56) Juffermans NP, Verbon A, van Deventer SJH et al:Elevated chemokine concentrations in sera of human immunodeficiency virus (HIV)-seropositive and HIV-seronegative patients with tuberculosis:apossible role for myrcobacterial lipoarabinomannan. Infec. Immu. 67:4295-4297, 1999.
-
61) Ogawa N, Ping L, Zhenjun L et al.:Involvement of the interferon-γ-induced T cell-attracting chemokines, interferon-γ-inducibie 10-kd protein (CXCL10) and monokine induced by interferon-γ (CXCL9) in the salivary gland lesions of patients with Sjogren's syndrome. Arthritis Rheum. 46:2730-2741, 2002.
-
62) Agostini C, Cassatella M, Zambello R et al.:Involvement of the IP-10 chemokine in sarcoidgranulomatous reactions. J. Immunol 161:6413-6420, 1998.
-
63) Nakae S, Komiyama Y, Narumi S et al.:IL-1-induced TNF aelicits inflammatory cell infiltration in the skinby inducing IFN-γ-inducible protein 10 in theelicitation phase of the contact hypersensitivity response. Int. Immunol. 15:251-260, 2003.
-
65) Han GD, Koike H, Nakatsue T et al.:IFN-γ-inducibleprotein 10 (IP-10) /CXCL10 has a differential role invole podocyte during Thy 1. 1 glomerulonephritis. J. Am. Soc. Nenprol. 14:3111-3126, 2003.
P.366 掲載の参考文献
-
2) Nagasawa T et al.:Proc. Natl. Acad. Sci. USA 91:2305-2309, 1994.
-
4) Feng Y et al.:Sceince 261:872-877, 1996.
-
13) Nagasawa T et al.:Adv. Immunol. 71:211, 1999.
-
16) Ara T et al.:J. Immunol 170:4649-4655, 2003.
-
18) Doitsidonu M et al.:Cell 111:647-659, 2002.
-
25) Clercq ED:Nature Rev. Drug Discovery 2:581-587, 2003.
P.373 掲載の参考文献
-
3) Forster R, Mathis AE, Kremmer E et al.:Aputative chemikine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87:1037-1047, 1996.
-
14) Lisignoh G, Toneguzzi S, Piacentini A et al.:Human osteoblasts express functional CXC chemokine receptors 3 and 5:activation by their ligands, CXCL10 and CXCL13, significantly induces alkaline phosphatase and beta-N-acetylhexosamidase release. J. Cell. Physiol 194:71-79, 2003.
-
29) Shirai T et al:Immunology and immunopathology of the autoimmune disease of NZB arld related mouse strains. Immunological Disorders in Mice. (eds. Rihova EB, Vetvicka V) , CRC Press Inc, 1991, p95-136.
-
30) Mclntyre TM, Strober W:Gut associated lymphoid tissue:Regulation of IgA B cell development (eds. Ogra P et al. ) , Mucosal Immunology. San Diego, CA, Academic Press, 1999, p319-356.
-
32) Phillips-Quagliata JM, Lamm ME:Lymphocyte homing to mucosal effector sites. Handbook of Mucosal Immunology. (eds. Ogra P et al) , San Diego, CA, Academic Press:1999, p319-356.
-
34) Kroese FG et al.:Evidence that intestinal IgA plasma cells in/t, κtransgerlic mice are derived from B-1 (Ly-1B) cells. Int. Immunol. 5:1317-1327, 1993.
-
36) Gong J-H, Clark-Lewis I:Antagonism of monocyte chemoattractant protein 1 identified by modification of dunctionally critical NH2-terminal residues. J. Exp. Med. 181:631-640, 1995.
P.379 掲載の参考文献
-
14) 稗島州雄:CXCR6. ケモカインハンドブック. (義江 修・他編), 秀潤社, 東京, 2000, p173-175.
-
15) Sharron M, Pohlmann S, Price K et al:Expressionand coreceptor activity of STRL33/Bonzo on primaryperipheral blood lymphocytes. Blood 96:41-49, 2000.
-
16) Croitoru-Lamoury J, Guillemin GJ, Boussin FD et al.:Expression of chemokines and their receptors inhuman and simian astrocytes:evidence for a centralrole of TNF alpha and IFN gamma in CXCR4 andCCR5 modulation. Glia 41:354-370, 2003.
P.387 掲載の参考文献
-
7) Clemons MJ, Marshall E, Durig J et al.:Arandomized phase-Hstudy of BB-10010 (macrophage inflammatory protein-1alpha) in patients with advanced breast cancer receiving 5-fluorouracil, adriamycin, and cyclophosphamide chemotherapy. Blood 92:1532-1540, 1998.
-
16) 山村昌弘:RAにおけるCXCR3, CCR4, CCR5の発現. リウマチ科 29:14-20, 2003.
-
23) Schall TJ, Jongstra J, Dyer BJ et al.:Ahuman T cellspecific molecule is a member of a new gene family. J. Immunol. 141:1018-1025, 1988.
-
25) 前田洋助, 野見山尚之, 茆原順一・他:ケモカインハ ンドブック. 秀潤社, 東京, 2000, p82-95, p176-178, p189-192.
-
26) Murphy PM, Baggiolini M, Charo IF et al.:International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev. 52:145-176, 2000.
-
29) NeIson PJ, Ortiz BD, Pattison JM et al.:Identificationof a novel regulatory region critical for expression of the RANTES chemokine in activated T lymphocytes. J. Immunol 157:1139-1148, 1996.
-
33) Kawai T, Seki M, Hiromatsu K et al.:Selectivediapedesis of Thl cells induced by endothelial cellRANTES. J. Immunol. 163:3269-3278, 1999.
-
36) 齋藤紀先, 茆原順一:ケモカイン(RANTES, eotaxin など). 日本臨床 59:1900-1905, 2001.
-
38) Karpus WJ, Lukacs NW, Kennedy KJ et al:Differential CC chemokine-induced enhancement of Thelper cell cytokine production. J. Immunol. 158:4129-4136, 1997.
-
39) Zhou Y, Kurihara T, Ryseck RP et al.:Impaired macrophage function and enhanced T cell-dependent immune response in mice lacking CCR5, the mouse homologue of the major HIV-1 coreceptor. J. Immunol. 160:4018-4025, 1998.
-
41) Sato N, Kuziel WA, Melby PC et al.:Defects in the generation of IFN-gamma are overcome to control infection with Leishmaniadonovani in CC chemokine receptor (CCR) 5-, macrophage inflammatory protein-1 alpha-, or CCR2-deficient mice. J. Immunoi. 163:5519-5525, 1999.
-
46) Gao W, Faia KL, Csizmadia V et al.:Beneficial effects of targeting CCR5 inεallograft recipients. Transplantation 72:1199-1205, 2001.
-
53) 上田博嗣:ケモカイン阻害剤. Molecular Medicine 38:184-193, 2001.
-
54) Hunter MG, Bawden L, Brotherton D et al.:BB-10010:an active variant of human macrophage inflammatory protein-1 alpha with improved pharmaceutical properties. Blood 86:4400-4408, 1995.
P.399 掲載の参考文献
-
2) Yoshimura T, Robinson EA, Tanaka S et al.:Purification and amino acid analysis of two human monocyte chemoattractants produced by phytohe-magglutinin-stimulated human blood mononuclear leukocytes. J. Immunol 142:1956-1962, 1989.
-
11) Ueda A, Okuda K, Ohno S et al.:NF-kappa B and Spl regulate transcription of the human monocyte chemoattractant protein-1 gene. Immunology 153:2052-2063, 1994.
-
14) 向田直史:ケモカイン遺伝子発現の制御機構. 血液・腫瘍科 45:356-362, 2002.
-
22) Salcedo R, Ponce ML, Young HA et al.:Human endothelial cells express CCR2 and respond to MCP-1:direct role of MCP-1 in angiogenesis and tumor progression. Blood 96:34-40, 2000.
-
28) Kimura H, Kasahara Y, Kurosu K et al.:Alleviation ofmonocrotaline-induced pulmonary hypertension byantibodies to monocyte chemotactic and activatingfactor/monocyte chemoattractant protein-1. Lab. Invest. 781571-581, 1998.
-
31) Gosiing J, Slaymaker S, Gu L et al.:MCP-1deficiencyreduces susceptibility to atherosclerosis in mice thatoverexpress human apolipoprotein B. J. Clin. Invest. 103:773-778, 1999.
-
44) Smith MW, Dean M, Carrington M et al.:Contrasting genetic influence of CCR2 and CCR5 variants on HIV-linfection and disease progression. Hemophilia Growth and Development Study (HGDS) , Multicenter AIDS Cohort Study (MACS) , Multicenter Hemophilia Cohort Study (MHCS) , San Francisco City Cohort (SFCC) , ALIVE Study. Science 277:959-965, 1997.
-
59) Mizadegan T, Diehl F, Ebi B et al.:Identification ofthe binding site for a rlovel class of CCR2b chemokinereceptor antagonists:binding to a commonchemokine receptor motif within the helical burldle. J. Biol. Chem. 275:25562-25571, 2000.
P.406 掲載の参考文献
-
3) Garcia-Zepeda EA, Rothenberg ME, Ownbey RT et al.:Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nature Med. 2:449-456, 1996.
-
4) Ganzalo JA, Jia GQ, Aguirre V et al.:Mouse eotaxin expression paralleIs eosinophil accumulation during lung allergic inflammation but it is not restricted to a Th2-type response. Immunity 4:1-14, 1996.
-
5) Ishi Y, Shirato M, Nomura A et al.:Cloning of rat eotaxin:Ozone inhalation increases mRNA and protein expression in lungs of brown Norway rats. Am. J. Physiol. 274 (1Pt 1):L171-176, 1998.
-
9) Shinkai A, Yoshisue H, Koike M et al.:Anovel human CC chemokine, eotaxin-3, which is expressed in IL-4-stimulated vascular endothelial cells, exhibits potent activity toward eosinophiIs. J. Immunol. 163:1602-1610, 1999.
-
11) Post TW, Bozic CR, Rothenberg ME et al.:Molecular characterization of two murine eosinophil beta chemokine receptors. J. Immunol. 155:5299-5305, 1995.
-
13) Kampen GT, Stafford S, Adachi T et al.:Eotaxin induces degranulation and chemotaxis of eosinophils through the activation of ERK2 and p38 mitogen-activated protein kinases. Blood 95:1911-1917, 2000.
-
18) Iikura M, Miyamasu M, Yamaguchi M et al.:Chemokine receptors in human basophils:inducibleexpression of functional CXCR4. J. Leukoc. Biol. 70:113-120, 2001.
-
31) Matsukura S, Stellato C, Plitt JR et al.:Activation of eotaxin gene transcription by NF-kappa B andSTAT6 in human airway epithelial cells. J. Immunol. 163:6876-6883, 1999.
-
33) Matsukura S, Kokubu F, Kuga H et al.:Differential regullation of eotaxin expression by IFN-gamma in airway epithelial cells. J. Allergy Clin. Immunol. 111:1337-1344, 2003.
-
35) Stellato C, Beck LA, Gorgone GA et al.:Expression of the chemokine RANTES by a human bronchial epithelial cell line. Modulation by cytokines and glucocorticoids. J. Immunol. 155:410-418, 1995.
-
42) Bonecchi R, Polentarutti N, Luini W et al:Up-regulation of CCRI and CCR3 and induction of chemotaxis to CC chemokines by IFN-gamma in human neutrophiIs. J. Imrnunol. 162:474-479, 1999.
-
45) Tenscher K, Metzner B, Schopf E et al.:Recombinant human eotaxin induces oxygen radical production, Ca (2+)-mobilization, actin reorganization, and CD11b upregulation in human eosinophiIs via a pertussis toxin-sensitive heterotrimeric guanine nucleotide-binding protein. Blood 88:3195-3199, 1996.
-
48) EIsner J, Hochstetter R, Kimmig D et al.:Human eotaxin represents a potent activator of therespiratory burst of human eosinophiIs. Eur. J. Immunol. 26:1919-1925, 1996.
-
51) Quackenbush EJ, Wershil BK, Aguirre V et al.:Eotaxin modulates myelopoiesis and mast cell development from embryonic hematopoietic progenitors. Blood 92:1887-1897, 1998.
-
56) Ying S, Meng Q, Zeibecoglou K et al.:Eosinophil chemotactic chemokines (eotaxin, eotaxin-2, RANTES, monocyte chemoattractant protein-3 (MCP-3) , and MCP-4) , and C-C chemokine receptor 3 expression in bronchial biopsies fromatopic and nonatopic (Intrinsic) asthmatics. J. Immunol 163:6321-6329, 1999.
-
59) Lamkhioued B, Renzi PM, Abi-Younes S et al.:Increased expression of eotaxin in bronchoalveolar lavage and airways of asthmatics contributes to the chemotaxis of eosinophiIs to the site of inflammation. J. Immunol. 159:4593-4601, 1997.
-
60) Katoh S, Matsumoto N, Fukushima K et al.:Elevated chemokine levels in bronchoalveolar lavage fluid ofpatients with eosinophilic pneumonia. J, Allergy Clin 1. Immunol. 106:730-736, 2000.
-
68) Yang Y, Loy J, Ryseck RP et al:Antigen-induced eosinophilic lung inflammation develops in mice deficient in chemokine eotaxin. Blood 92:3912-3923, 1998.
-
69) Ying S, Robinson DS, Meng Q et al.:C-C chemokines in allergen-induced late-phase cutaneous responses in atopic subjects:association of eotaxin with early 6-hour eosinophiIs, and of eotaxin-2 and monocyte chemoattractant protein-4 with the later 24-hour tissue eosinophilia, and relationship to basophiIs and other C-C chemokines (monocyte chemoattractant protein-3 and RANTES) . J. Immunol. 163:3976-3984, 1999.
-
72) EIsner J, Petering H, Kimmig D et al.:The CC chemokine receptor antagonist met-RANTES inhibits eosinophil effector functions. Int. Arch. Allergy Immunol. 118:462-465, 1999.
-
74) EIsner J, Mack M, Bruhl H et al.:Differential activation of CC chemokine receptors by AOP-RANTES. J. Biol. Chem. 275:7787-7794, 2000.
P.417 掲載の参考文献
-
1) Mosmann TR, Cherwinski H, Bond MW et al.:Two types of murine helper T cell clone. 1. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136:2348-2357, 1986.
-
14) Stine JT, Wood C, Hill M et al.:KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and selectively chemoattracts TH2 cells. Blood 95:1151-1157, 2000.
-
15) Napolitano M, Santoni A:Structure and function of the CC chemokine receptor (CCR) 8. Forum (Genova) 9:315-324, 1999.
-
18) Goya I, Gutierrez J, Varona R et al.:Identification of CCR8 as the specific receptor for the human beta-chemokine I-309:cloning and molecular characterization of murine CCR8 as the receptor for TCA-3. J. Immunol. 160:1975-1981, 1998.
-
21) Miller MD, Hata S, De Waal Malefyt R et al.:Anovel polypeptide secreted by activated human T lymphocytes. J. Immunol. 143:2907-2916, 1989.
-
24) Zingoni A, Soto H, Hedrick JA et al.:The chemokine receptor CCR8 is preferentially expressed in Th2 but not Thl cells. J. Immunol. 161:547-551, 1998.
-
25) Andrew DP, Chang MS, McNinch J et al.:STCP-1 (MDC) CC chemokine acts specifically on chronically activated Th21ymphocytes and is produced by monocytes on stimulation with Th2 cytokines IL-4 and IL-13. J. Immulnol. 161:5027-5038, 1998.
-
28) D'Ambrosio D, Iellem A, Bonecchi R et al.:Selectiveup-regulation of chemokine receptors CCR4 andCCR8 upon activation of polarized human type 2 Thcells. J. Immunol. 161:5111-5115, 1998.
-
32) Albanesi C, Scarponi C, Sebastiani S et al.:A cytokineto-chemokine axis between T lymphocytes and keratinocytes can favor Th1 cell accumulation inchronic inflammatory skin diseases. J. Leukoc. Biol. 70:617-623, 2001.
-
34) Selvan RS, Butterfield JH, Krangel MS:Expression of multiple chemokine genes by a human mast cell leukemia. J. Biol. Chem. 269:13893-13898, 1994.
-
39) Panina-Bordignon P, Papi A, Mariani M et al.:The C-Cchemokine receptors CCR4 and CCR8 identify airway T celis of allergen-chailenged atopic asthmat ics. J. Clin. Invest. 107:1357-1364, 2001.
-
43) Luttichau HR, Stine J, Boesen TP et al.:Ahighly selective CC chemokine receptor (CCR)8 antagonist encoded by the poxvirus molluscum contagiosum. J. Exp. Med. 191:171-180, 2000.
P.429 掲載の参考文献
-
2) Rossi DL, Vicari AP, Franz-Bacon K et al.:Identification through bioinformatics of two new macrophage proinflammatory human chemokines:MIP-3 alpha and MIP-3 beta. J. Immunol. 158:1033-1036, 1997.
-
3) Hromas R, Kim CH, Klemsz M et al:Isolation and characterization of Exodus-2, a novel C-C chemokine with a unique 37-amino acid carboxyl-terminal extension. J. Immunol. 159:2554-2558, 1997.
-
11) Liao F, Rabin RL, Smith CS et al:CC-chemokine receptor 6 is expressed on diverse memory subsets ofT cells and determines responsiveness to macrophage inflammatory protein 3 alpha. J. Immunol 162:186-194, 1999.
-
13) Krzysiek R, Lefevre EA, Bernard J et al:Regulation of CCR6 chemokine receptor expression and responsiveness to macrophage inflammatory protein-3 alpha/CCL20 in human B cells. Blood 96:2338-2345, 2000.
-
15) Yang D, Howard OM, Chen Q et al.:Cutting edge:immature dendritic cells generated from monocytes in the presence of TGF-beta 1 express functional C-C chemokine receptor 6. J. Immunol. 163:1737-1741, 1999.
-
24) Dieu-Nosjean MC, Massacrier C, Homey B et al:Macrophage inflammatory protein 3 alpha is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Larngerhans cell precursors. J. Exp. Med. 192:705-718, 2000.
-
25) Casamayor-Palleja M, Mondiere P, Amara A et al.:Expression of macrophage inflamrrlatory protein-3 alpha, stromal cell-derived factor-1, and B-cell-attracting chemokine-1 identifies the tonsil crypt as an attractive site for B cells. Blood 97:3992-3994, 2001.
-
50) NeIson RT, Boyd J, Gladue RP et al.:Genomic organization of the CC chemokine mip-3 alpha/CCL20/larc/exodus/SCYA20, showing gene structure, splice variants, and chromosome localization. Genomics 73:28-37, 2001.
P.438 掲載の参考文献
-
3) Zaballos A, Gutierrez J, Varona R et al.:Cutting edge:identification of the orphan chemokine receptor GPR-9-6as CCR9, the receptor for the chemokine TECK. J. Immunol. 162:5671-5675, 1999.
-
4) Youn BS, Kim CH, Smith FO et al.:TECK, an efficacious chemoattractant for human thymocytes, uses GPR-9-6/CCRg as a specific receptor. Blood 94:2533-2536, 1999.
-
15) Campbell JJ, Pan J, Butcher EC:Cutting edge:developmental switches in chemokine responsesduring T cell maturation. J. Immunol 163:2353-2357, 1999.
-
19) Wilkinson B, Owen JJ, Jenkinson EJ:Factors regulating stem cell recruitment to the fetal thymus. J. Immunol. 162:3873-3881, 1999.
P.449 掲載の参考文献
-
1) Airkenbach M, Josefsen K, Yalamanchili, R, LenoirG, Kieff E:Epstein-Barr virus-induced genes:first lymphocyte-specific G protein-coupled peptide receptors. J. Virol. 67:2209-2220, 1993.
-
3) Yoshida R, Imai T, Hieshima K, Kusuda J, Baba M, Kitaura M, Nishimura M, Kakizaki M, Nomiyama H, Yoshie O:Molecular cloning of a novel human CC chemokine EBI1-ligand chemokine that is a specific functional ligand for EBI1, CCR7. J. Biol Chem. 272:13803-13809, 1997.
-
4) Nagira M, Imai T, Hieshima K, Kusuda J, Ridanpaa M, Takagi S, Nishimura M, Kakizaki M, Norniyarna H, Yoshie O:Molecular cloning of a novel human CC chemokine secondary lymphoid-tissue chemokine that is a potent chemoattractant for lymphocytes and mapped to chromosome gp13, J. Biol. Chem. 272:19518-19524, 1997.
-
9) Nakano H, Mori S, Yonekawa H, Nariuchi H, Matsuzawa A, Kakiuchi T:Anovel mutant gene involved in T-lymphocyte-specific horning into peripheral lymphoid organs on mouse chromosome 4. Blood 91:2886-2895, 1998.
-
12) Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A:Two subsets of memory T lymphocytes with distinct homing potentiaIs and effector functions. Nature 401:708-712, 1998.
-
22) Stein JV, Rot A, Luo Y, Narasimhaswamy M, NakanoH, Gunn MD, Matsuzawa A, Quackenbush EJ, DorfME, von Andrian UH:The CC chemokine thymusderived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen Lrnediated arrest of rolling T lyrnphocytes in perip止ierallymph node high endothelial venules. J. Exp. Med. 191:61-76, 2000.
-
27) Zanin-Zhorov A, Nussbaum G, Franitza S, Cohen IR, Lider, O:Tcells respond to heat shock protein 60 via TLR2:activation of adhesion and inhibition of chemokine receptors. Faseb J. 17:1567-1569, 2003.
-
31) Fukui Y, Hashimoto O, Sanui T, Oono T, Koga H, Abe M, Inayoshi A, Noda M, Oike M, Shirai T, Sasazuki T:Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature 412:826-831, 2001.
-
34) Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E, Lipp M:CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:23-33, 1999.
-
35) Ueno T, Hara K, Willis MS, Malin MA, Hopken UE, Gray DH, Matsushima K, Lipp M, Springer TA, Boyd RL, Yoshie O, Takahama Y:Role for CCR7 ligands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity 16:205-218, 2002.
-
39) Luther SA, Bidgol A, Hargreaves DC, Schrnidt A, Xu Y, Paniyadi J, Matloubian M, Cyster JG:Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J. Immunol. 169:424-433, 2002.
-
40) Crowley MT, Reilly CR, Lo D:Influence of lymphocytes on the presence and organization ofdendritic cell subsets in the spleen. J. Immunol. 163:4894-4900, 1999.
-
45) Columba-Cabezas S, Serafini B, Ambrosini E, Aloisi F:Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis:imp1ications for the maintenance of chronic neuroinflammation. Brain Pathol. 13:38-51, 2003.
-
52) Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A:Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50-56, 2001.
-
55) Mashino K, Sadanaga N, Yamaguchi H, Tanaka F, Ohta M, Shibuta K, Inoue H, Mori M:Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res. 62:2937-2941, 2002.
-
58) Kirk CJ, Hartigan-O'Connor D, Nickoloff BJ, Chamberlain JS, GiedDn M, Aukerman L, Mule JJ:T cell-dependent antitumor immunity mediated by secondary lymphoid tissue chemokine:augmentation of dendritic cell-based immunotherapy. Cancer Res. 61:2062-2070, 2001.
-
60) Jensen KK, Chen SC, Hipkin RW, Wiekowski MT, Schwarz MA, Chou CC, Simas JP, Alcami A, Lira SA:Disruption of CCL21-induced chemotaxis in vitro and in vivo by M3, a chemokine-binding protein encoded by murine gammaherpesvirus 68. J. Virol. 77:624-630, 2003.
-
61) Mandala S, Haldu R, Bergstrom J, Quackenbush E, Xie J, Milligan J, Thornton R, Shei GJ, Card D, Keohane C, Rosenbach M, Hale J, Lynch CL, Rupprecht K, Parsons W, Rosen H:Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296:346-349, 2002.
P.457 掲載の参考文献
-
2) lchihashi-Mochizuki l, Kitaura M, Baba M et al.:Molcecular cloning of a novel CC chemokine, interleukin-11 receptor a-locus chemokine (ILC) , which is located on chromosome 9p13 and a potential homologue of a CC chemokine encoded by molluscum contagiosum virus. FEBS Lett. 460:544-548, 1999.
P.467 掲載の参考文献
-
5) Muller S, Dorner B, Korthauer U et al.:Cloning of ATAC, an activation-induced, chemokine-relatedmolecule exclusively expressed in CD8+. Tlymphocytes. Eur. J. Immunol. 25:1744-1748, 1995.
-
8) Garton KJ, Gough PJ, Blobel CP et al.:Tumor necrosisfactor-alpha-converting enzyme (ADAM17) mediatesthe cleavage and shedding of fractalkine (CX3CL1) . J. Biol. Chem. 276:37993-38001, 2001.
-
9) Kuloglu ES, McCaslin DR, Markley JL et al.:Structural rearrangement of human lymphotactin, a Cchemokine, under physiological solution conditions. J. Biol. Chem. 277:17863-17870, 2002.
-
10) Hedrick JA, Saylor V, Figueroa D et al.:Lymphotactinis produced by NK cells and attracts both NK cells and T cells in vivo J. Immunol. 158:1533-1540, 1997.
-
23) Boismenu R, Feng L, Xia YY et al.:Chemokine expression by intraepithelial gamma delta T cells. Implications for the recruitment of inflammatory cells to damaged epithelia. J. Immunol. 157:985-992, 1996.
-
26) Shiraishi K, Fukuda S, Mori T et al.:Identification of fractalkine, a CX3C-type chemokine, as a direct target of p53. Cancer Res. 60:3722-3726, 2000.
-
28) Yoshida T, Ishikawa I, Ono Y et al.:An activation-responsive element in single C motif-1/lymphotactin promoter is a site of constitutive and inducible DNA-Protein interactions involving nuclear factor of activated T cell. J. Immunol. 163:3295-3303, 1999.
-
30) Cipriani B, Borsellino G, Poccia F et al.:Activation of C-Cbeta-chemokines in human peripheral blood gammadelta T cells by isopentenyl pyrophosphate and regulation by cytokines. Blood 95:39-47, 2000.
-
32) Rumsaeng V, Vliagoftis H, Oh CK et al.:Lymphotactin gene expression in mast cells following Fc (epsilon) receptor I aggregation:modulation by TGF-beta, IL-4, dexamethasone, and cyclosporin A. J. Immunol. 158:1353-1360, 1997.
-
33) Adachi S, Nakano T, Vliagoftis H et al.:Receptor-mediated modulation of murine mast cell function by alpha-melanocyte stimulating hormone. J. Immunol. 163:3363-3368, 1999.
-
35) 今井俊夫:ケモカインと接着分子のハイブリッド fractalkine. Annual Review 免疫 2000:186-192, 1999.
-
62) Huang H, Li F, Gordon JR et al.:Synergistic enhancement of antitumor immunity with adoptively transferred tumor-specific CD4+and CD8+T cells and intratumoral lymphotactin transgene expression. Cancer Res, 62:2043-2051, 2002.
サイトカインの細胞内情報伝達機構
P.483 掲載の参考文献
-
2) Abdel-Meguid SS, Shieh W, Dayringer HE, Violand BN, Bentle LA:Three dimensiorlal structure of a genetically engineered variant of porcine growth hormone. Proc. Natl. Acad. Sci. USA 84:6434-6437, 1990.
-
4) de Vos AM, Ultsch M, Kossiakoff AA:Human growth hormone and extracellular domain of its receptor. Crystal structure of the complex. Science 255:306-312, 1992.
-
10) Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K, et al.:Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715-725, 2000.
-
13) Noguchi M, Yi H, Rosenblatt HM, Filipovich AH, AdeIstein S, Modi WS, McBride OW, Leonard WJ:Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell. 73:147-157, 1993.
-
15) Macchi P, Villa A, Giliani S, Sacco MG, Frattini A, Porta F, Ugazio AG, Johnston JA, Candotti F, O'Shea JJ et al.:Mutations of JAK-3 gene in patients with autosomal severe combined immune deficiency (SCID) . Nature 377:65-68, 1995
-
16) Russell SM, Tayebi N, Nakajima H, Riedy MC, Roberts JL, Aman MJ, Migone TS, Noguchi M, Markert ML, Buckley RH et al.:Mutation of JAK3 in a patient with SCID:essential role of JAK3 in lymphoid development. Science 270:797-800, 1995.
-
20) Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, King KL, Sheehan KC, Yin L, Pennica D, Johnson EM Jr, Schreiber RD:Disruption of the JAKl gene demonstrates obligatory and nonredundant roles of the JAKS in cytokine-induced biologic responses. Cell. 93:373-383, 1998.
-
21) Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, Vanin EF, Bodner S, Colamonici OR, van Deursen JM, Grosveld G, Ihle JN: JAK2 is essential for signaling through a variety of cytokine receptors. Cell. 93:385-395, 1998.
-
23) Karaghiosoff M, Neubauer H, Lassnig C, Kovarik P, Schindler H, Pircher H, McCoy B, Bogdan C, Decker T, Brem G, Pfeffer K, Muller M:Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity 13:549-560, 2000.
-
24) Shimoda K, Kato K, Aoki K, Matsuda T, Miyamoto A, Shibamori M, Yamashita M, Numata A, Takase K, Kobayashi S, Shibata S, Asano Y, Gondo H, Sekiguchi K, Nakayama K, Nakayama T, Okamura T, Okamura S, Niho Y, Nakayama K:Tyk2 plays a restricted role in IFN alpha signahng, although it is required for IL-12-mediated T cell function. Immunity 13:561-571, 2000.
-
25) Meraz MA, White JM, Sheehan KC, Bach EA, Rodig SJ, Dighe AS, Kaplan DH, Riley JK, Greenlund AC, Campbell D, Carver-Moore K, DuBois RN, Clark R, Aguet M, Schreiber RD:Targeted disruption of the Statl gene in mice reveaIs unexpected physiologic specificity in the JAK-STAT signaling Pathway. Cel1. 84:431-442, 1996.
-
32) Thierfelder WE, van Deursen JM, Yamamoto K, Tripp RA, Sarawar SR, Carson RT, Sangster MY, Vignali DA, Doherty PC, Grosveld GC, Ihle JN:Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382:171-174, 1996.
-
35) Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN:Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell. 93:841-850, 1998.
-
37) Shimoda K, van Deursen J, Sangster MY, Sarawar SR, Carson RT, Tripp RA, Chu C, Quelle FW, Nosaka T, Vignali DA, Doherty PC, Grosveld G, Paul WE, Ihle JN:Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380:630-633, 1996.
-
44) Chung JY, Park YC, Ye H, Wu H:Full Text All TRAFs are not created equal:common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci. 115:679-688, 2002.
-
46) Yeh WC, Shahinian A, Speiser D, Kraunus J, BiHia F, Wakeham A, de la Pompa JL, Ferrick D, Hum B, Iscove N, Ohashi P, Rothe M, Goeddel DV, Mak TW:Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 7:715-725, 1997.
-
48) ShieIs H, Li X, Schumacker PT, Maltepe E, Padrid PA, Sperling A, Thompson CB, Lindsten T:Full Text TRAF4 deficiency leads to tracheal malformation with resulting alterations in air flow to the lungs. Am. J. Pathol 157:679-688, 2000.
-
49) Nakano H, Sakon S, Koseki H, Takemori T, Tada K, Matsumoto M, Munechika E, Sakai T, Shirasawa T, Akiba H, Kobata T, Santee SM, Ware CF, Rennert PD, Taniguchi M, Yagita H, Okumura K:In PMC targeted disruption of Traf5 gene causes defects in CD40-and CD27-mediated lymphocyte activation. Proc. Natl. Acad. Sci. U S A 96:9803-9808, 1999.
-
51) Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, Nakao K, Nakamura K, Katsuki M, Yamamoto T, Inoue J:Severe osteopetrosis, defective interleukin-1 signalling and lymph node organo-genesis in TRAF6-deficient mice. Genes CelIs. 4:353-362, 1999.
-
52) Ke1Uher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P:The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 8:297-303, 1998.
-
53) Yeh WC, Pompa JL, McCurrach ME, Shu HB, Elia AJ, Shahinian A, Ng M, Wakeham A, Khoo W, Mitchell K, El-Deiry WS, Lowe SW, Goeddel DV, Mak TW:FADD:essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science. 279:1954-1958, 1998.
-
57) Schreuder H, Tardif C, Trump-Kalimeyer S, Soffientini A, Sarubbi E, Akeson A, Bowlin T, Yanofsky S, Barrett RW:Anew cytokine-receptor binding mode revealed by the crystal structuare of the IL-1receptor with an antagonist. Nature 386:194-200, 1997.
P.492 掲載の参考文献
-
35) Kubo M, Yamashita M, Abe R et al.:CD28 costimulation accelerates IL-4 receptor sensitivity and IL-4-mediated Th2 differentiation. J. Immunol 163:2432-2442, 1999.
-
36) Rodriguez-Palmero M, Hara T, Thumbs A et al.:Triggering of T cell proliferation through CD28 induces GATA-3 and promotes T helper type 2 differentiation in vitro and in vivo. Eur. J. Immunol. 29:3914-3924, 1999.
-
48) Solymar DC, Agarwal S, Bassing CH et al.:A3' enhancer in the IL-4 gene regulates cytokine prodしtction by Th2 cells and mast cells. Immunity 17:41-50, 2002.
P.502 掲載の参考文献
-
2) Kralovics R, Indrak K, Stopka T et al:Two new EPO receptor mutations:Truncated EPO receptors are most frequently asociated with primary familial and congenital polycytherrlias. Blood 90:2057-2061, 1997.
-
3) Klingmuller U, Lorenz U, Cantley, LC et al.:Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signaIs. Cell 80:726-738, 1995.
-
10) Chiang YJ, Kole HK, Brown K, Naramura M, Fukuhara S, Hu RJ, Jang IK, Gutkind JS, Shevach E, Gu H:Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403:216-220, 2000.
-
15) Sasaki A, Taketomi T, Kato R, Saeki K, Nonami A, Sasaki M, Kuriyama M, Saito N, Shibuya M, Yoshimura A:Mammalian Sprouty 4 suppresses Ras-independent ERK activation by binding to Rafl. Nature Cell. Biol 5:427-432, 2003.
-
16) Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, Tsuneoka M, Komiya S, Baron R, Yoshimura A:Spred, a Sprouty-related suppressor of Ras signaling. Nature 412:647-651, 2001.
-
25) Zhang JG, Metcalf D, Rakar S, Asimakis M, Greenhalgh CJ, WilIson TA, Starr R, NichoIson SE, Carter W, Alexander WS, Hilton DJ, Nicola NA:The SOCS box of suppressor of cytokine signaling-1 is important for inhibition of cytokine action in vivo. Proc. Natl. Acad. Sci. U S A 98:13261-13265, 2001.
-
30) NichoIson SE, De Souza D, Fabri LJ et al.:Suppressor of cytokine signaling-3 preferentially binds to the SHP-2-binding site on the shared cytokine receptor subunit gp130. Proc. Natl. Acad. Sci. U S A 97:6493-6498, 2000.
-
35) Greenhalgh CJ, Bertolino P, Asa SL, Metcalf D, Corbin JE, Adams TE, Davey HW, Nicola NA, Hilton DJ, Alexander WS:Growth enhancement in suppressor of cytokine signaling 2 (SOCS-2)-deficient mice is dependent on signal transducer and activator of transcription 5b (STAT5b) . Mol Endocrinol. 16:1394-1406, 2002,
-
37) Alexander WS, Starr R, Fenner JE et al.:SOCSI is a critical inhibitor of interferonγ signaling and p revents the potentially fatal neonatal actions of this cytokine. Cell 98:597-608, 1999.
-
38) Hanada T, Yoshida H, Kato S, Tanaka K, Masutani K, Tsukada J, Nomura Y, Mimata H, Kubo, M Yoshimura A:Suppressor of cytokine signaling-1 (SOCS1) isessential for suppressing dendritic cell activation andsystemic autoimmunity. Immunity (in press).
-
39) Chong MM, Cornish AL, Darwiche R, Stanley EG, Purton JF, Godfrey DI, Hilton DJ, Starr R, AlexanderWS, Kay TW:Suppressor of cytokine signaling-1 is acritical regulator of interleukin-7-dependent CD8+Tcell differentiation. Immunity 18:475-487, 2003.
-
43) Nakagawa R, Naka T, Tsutsui H, Fujimoto M, KimuraA, Abe T, Seki E, Sato S, Takeuchi O, Takeda K, AkiraS, Yamanishi K, Kawase I, Nakanishi K, Kishimoto T:SOCS-l participates in negative regulation of LPSresponses. Immunity 17:677-687, 2002.
-
46) Seki Y-i, Inoue H, Nagata N, Hayashi K, Fukuyama S, Matsumoto K, Komine O, Hamano S, Himeno K, Inagaki-Ohara K, Cacalano N, O'Garra A, Oshida T, Saito H, Johnston J A, Yoshimura A, Kubo M:SOCS-3regulates onset and maintenance of TH2-mediatedallergic responses Nature Med. 9:1047-1054, 2003.
-
48) Shouda T, Yoshida T, Hanada T, Wakioka T, Oishi M, Miyoshi K, Komiya S, Kosai K, Hanakawa Y, Hashimoto K, Nagata K, Yoshimura A:Induction ofthe cytokine signal regulator SOCS3/CIS3 as atherapeutic strategy for treating inflammatoryarthritis. J. Clin. Invest. 108:1781-1788, 2001.
-
50) Yasukawa H, Ohishi M, Mori H, Murakami M, Chinen T, Aki D, Hanada T, Takeda K, Akira S, Hoshijima M, Hirano T, Chien KR, Yoshimura A:IL-6 induces an anti-inflammatory response in theabsence of SOCS3 in macrophages. Nature Immunol 4:551-556, 2003.
P.513 掲載の参考文献
-
4) Issafran H, Angers S, Bulenger S et al.:Constitutive agonist-independent CCR5 oligomerization and anti-body-mediatedclustering occurring at physiological levels of receptors. J. Biol. Chem. 277:34666-34673, 2002.
-
8) El-Shazly A, Yamaguchi M, Masuyama, K et al.:Novel association of the Src family kinases, Hck and c-Fgr, with CCR3 receptor stimulation:apossible mechanism for eotaxin-induced human eosinophil chemotaxis. Biochem. Biophys. Res. Commun. 264:163-170, 1999.
-
9) Vila-coro AJ, Rodriguez-Frade JM, Martin De Ana A et al.:The chemokine SDF-1 alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J. 13:1699-1710, 1999.
-
11) Rodriguez-Frade J M Vila-Co A J, Martin De Ana A et al:The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proc. Nat. Acad. Sci. USA 96:3628-3633, 1999.
-
15) Arai H, Tsou C-L, Charo IF:Chemotaxis in a lymphocyte cell line transfected with C-C chemokine receptor 2B:evidence that directed migration is mediated by Bγdimmers released by activation of Gai-coupled receptors. Proc. Natl. Acad. Sci. USA 94:14495-14499, 1997.
-
18) Hirsch E, Katanaev VL, Garlanda C et al:Central role for G protein-coupled phosphoinositide 3-kinaseγin inflammation. Science 287:1049-1053, 2000.
-
19) Li Z, Jiang H, Xie W et al:Roles of PLC-B2 and B3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287:1046-1049, 2000.
-
20) Sasaki T, Sasaki J, Jones RG et al.:Function of PI3Kγin thymocyte development, T cell activation and neutrophil migration. Science 287:1040-1046, 2000.
-
21) Vankaesebroeck B, Jones GE, Allen, WE et al.:Distinct PI (3) Ks mediate mitogenic signaling and cell migration in macrophage. Nat. Cell. Biol. 1:69-71, 1999.
-
31) Yayoshi-Yamamoto S, Taniguci I, Watanabe T:FRL, a movel fomin-related protein, binds to Rac and regulates cell motility and survival of macrophages. Mol. Cell. Biol. 20:6872-6881, 2000.
-
33) Ma AD, Metjian A, Bagrodia S et al.:Cytoskeletal reorganization by G protein-coupled receptors is dependent on phosphoinositide 3-kinaseγ, a Rac Guanosine exchange factor, and Rac. Mol. Cell. Biol. 18:4744-4751, 1998.
-
40) Hart MJ, Jiang X, Kozasa T et al.:Direct stimulation of the guanine nucleotide exchange activity of p115RhoGEF by Gα13. Science 280:2112-2114, 1998.
-
44) Constantin G, Majeed M, Giagulli C et al.:Chemokines trigger immediate β2 integrin affinity and mobility changes:differential regulation and roles in lymphocyte arrest under flow. Immunity 13:759-769, 2000.
-
45) Shimonaka M, Katagiri K, Nakayama T et al.:Rapl translates chemokine signals to integrin activation, cell polarization and motility across vascular endotheliu under flow. J. Cell. Biol. 161:417-427, 2003.
-
46) Ilic D, Furuta Y, Kanazawa S et al.:Reduced cell motility and erlharlced forcal adhesion contact formation in cells from FAK-deficient mice. Nature 377:539-544, 1995.
-
47) Feniger-Barish R, Yron I, Meshel T et al.:IL-8-induced migratory responses through CXCRI and CXCR2:association with phosphorylation and cellular redistribution of focal adhesion kinase. Biochemistry 42:2874-2886, 2003.
-
49) 沖垣光彦:マクロファージの形態および遊走機能におけるPYK2の不可欠な役割. 第23回日本分子生物学会年会講演要旨集, 2000.
-
50) Knall C et al.:Proc. Natl. Acad. Sci. USA 94:3052-3057, 1997.
-
55) Dairaghi DJ, Soo KS, Oldham ER et al:RANTES-induced T cell activation correlates with CD3 expression. J. Immurlol. 160:426-433, 1998.
-
63) Karpus WJ, Lukacs NW, Kennedy KJ et al.:Differential CC chemokine-induced enhancement of T helper cell cytokine production. J. Immunol 158:4129-4136, 1997.
-
64) 灰野 誠・他:7回膜貫通型受容体研究の新展開. 医学のあゆみ別冊. 2001, p247-251.
P.524 掲載の参考文献
-
2) Murphy PM, Baggiolini M, Charo IF et al.:International union of pharmacology XXII. Nomenclature for chemokine receptors. Pharmacol. Rev. 52:145-176, 2000.
-
3) Mukaida N:Interleukin-8:an expanding universe beyond neutrophil chemotaxis and activation. Int. J. Hematol 72:391-398, 2000.
-
4) Xu L, Xie K, Mukaida N et al.:Hypoxia-induced elevation in interleukin-8 expression by human ovarian carcinoma cells. Cancer Res. 59:5822-5829, 1999.
-
5) Kitadai Y, Haruma K, Mukaida N et al.:Regulation of disease-progression genes in human gastric carcinoma cells by interleukin 8. Clin. Cancer Res. 6:2735-2740, 2000.
-
6) Karin M, Ben-Neriah Y:Phosphorylation meets ubiquitination:the control of NF-κB activity. Annu. Rev. Immunol. 18:621-663, 2000.
-
7) Mukaida N, Morita M, Ishikawa Y et al.:Anovel mechanism of glucocorticoid-mediated gene repression:nuclear factor-κB is the target for glucocorticoid-mediated interleukin-8 gene repression. J. Biol. Chern. 269:13289-13295, 1994.
-
8) Oliveira IC, Mukaida N, Matsushima K et al.:Transcriptional inhibition of interleukin-8 gene by interferon is mediated by the NF-κB site. Mol. Cell. Biol. 14:5300-5308, 1994.
-
9) Barboric M, Nissen RM, Kanazawa S et al.:NF-κB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Mol. Celi. 8:327-337, 2001.
-
10) Zharlg H, Sheherd AT, Eason DD et al:Retinoblas-toma protein expression leads to reduced Oct-1 and DNA binding activity and enhances interleukin-8 expression. Cell. Growth Differ. 10:457-465, 1999.
-
11) lguchi A, Kitajima l, Yamakuchi M et al.:PEA3 and AP-1 are required for constitutive IL-8 gerle expression in hepatoma cells. Biochem. Biophys. Res. Commun. 279:166-171, 2000.
-
12) Polakis P:Wnt signaling and cancer. Genes Dev. 14:1837-1851, 2000.
-
13) Levy L, Neuveut C, Renard C-A et al.:Transcriptional activation of interleukin-8 byB-catenin-Tcf4. J. Bio. Chem. 277:42386-42393, 2002.
-
14) Anisowicz A, Messineo M, Lee SW et al, :An NF-rc B-like transcription factor mediates IL-1/TNF-ainduction of gro in human fibroblasts. J. Immunol. 147:520-527, 1991.
-
15) Wood LD, Farmer AA, Richmond A:HMGI (Y) and Spl in addition to NF-κB regulate transcription of the MGSA/Groagene. Nucleic. Acid Res. 23:4210-4219, 1995.
-
17) Devalaraja MN, Wang DZ, Ballard DW et al.:Elevated constitutive IκB kinase activity and lκB-aphospho-rylation in Hs294T melanoma cells lead to increased basal MGSA/GRO-atranscription. Cancer Res. 59:1372-1377, 1999.
-
21) Majumder S, Zhou LZ, Chaturverdi P et al.:p48/STAT-1α-containing complexes play a predominant role in induction of IFN-γ-inducible protein, 10kDa (IP-10) by IFN-γ alone or in synergy with TNF-a. J. Immunol. 161:4736-4744, 1998.
-
22) Ohmori Y, Hamilton TA:Cooperative interaction between interferon (IFN) stimulus response element andκB sequence motifs controIs IFNγ-and lipopolysac-charide-stimulated transcription from the murine IP-10 promoter. J. Biol. Chem. 268:6677-6688, 1993.
-
23) Wu C, Ohmori Y, Bandyopadhyay S et al.:Interferon-stimulated response element and NF-κB sites to cooperate to regulate double-stranded RNA-induced transcription of the IP-10 gene. J. Interferon Res. 14:357-363, 1994.
-
26) Ueda A, Okuda K, Ohno S et al.:NF-κB and Spl regulates transcription of the human monocyte chemoat-tractant protein-1gene. J. Immunol. 153:2052-2063, 1994.
-
28) Mori N, Ueda A, Iseda S et al.:Human T-cell leukemia virus type I Tax activates transcription of the human monocyte chemoattractant protein-1 gene through two nuclear factor-κB sites. Cancer Res. 60:4939-4045, 2000.
-
29) Ueno M, Sonoda Y, Funakoshi M et al:Differential induction of JE/MCP-1 in subclones from a murine macrophage cell line, RAW254. 7:Role ofκB binding site protein. Cytokine 12:207-219, 2000.
-
32) NeIson PJ, Kim HT, Manning WC et al.:Genomic organization and transcriptional regulation of the RANTES chemokine gene. J. Immunol 151:2601-2612, 1993.
-
34) NeIson pJ, Ortiz BD, Pattison JM et al.:Identification of a novel regulatory region critical for expression of the RANTES chemokine in activated T lymphocytes. J. Immunol. 157:1139-1148, 1996.
-
35) Song A, Chen Y-F, Thamatrkoln K et al.:RFLAT-1:a new zinc finger transcription factor that activates RANTES gene expression in T lympllocytes. Immunity 10:93-103, 1999.
-
38) Matsukura S, Stellato C, Plitt JR et al.:Activation of eotaxin gene transcription by NF-κB and STAT-6 in human airway epithelial cells. J. Immunol. 163:6876-6883, 1999.
-
39) Huber MA, Denk A, Peter RU et al.:The IKK/1κBa/NF-κB pathway plays a key role in the regulation of CCR3 and eotaxin-1 in fibroblasts. A critical link to dermatitis in IκBα-deficient mice. J. Biol. Chem. 277:1268-1275, 2002.
-
41) Sugita S, Kohno T, Yamamoto K et al:Induction of macrophage protein-3α gene expression by TNFdependent NF-κB activation. J. Immunol 168:5621-5628, 2002.
-
42) Imaizumi Y, Sugita S, Yamamoto K et al.:Human T cell leukemia virus type-I Tax activates human macrophage inflammatory protein-3a/CCL20 genetranscription via the NF-κB pathway. Int. Immunol. 14:147-155, 2002.
-
43) Fuj iie S, Hieshima K, Izawa D et al.:Proinflammatory cytokines induce liver and activation-regulated chemokine/macrophage inflammatory protein-3a/CCL20 in mucosal epithelial cells through NF-κB[correction of NK-κB]. Int. Immunol. 13:1255-1263, 2001. Erratum in:Int. Immunol. 13:1443, 2001.
-
47) Schaffer A, Yu X, He Y et al.:BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13:199-212, 2000.
-
48) Shiraishi K, Fukuda S, Mori T et al.:Identification of fractalkine, a CX3C chemokine, as a direct target of p53. Cancer Res. 60:3722-3726, 2000.
神経 : 内分泌・免疫相関
P.543 掲載の参考文献
-
1) 深田順一:免疫系と内分泌系の相関. 最新内科学大系 12, 間脳・下垂体疾患(井村裕夫・他編). 中山書店, 東京, 1993, p17-24.
-
2) 深田順一:神経・免疫・内分泌相関. 最新内科学体系 2, 科学としての内科学(井村裕夫・他編). 中山書店, 東京, 1997, p253-261.
-
3) Fulkata J, Imura H, Nakao K:Cytokines as mediators in the regulation of the hypothalamic-pituitary-adrenal function. J. Endocrinol. Invest. 17:141-155, 1994.
-
4) 深田順一:生殖生理と免疫-間脳・下垂体-. 図説産婦人科VIEW. メジカルビュー社, 1997, p11-21.
-
5) 森 崇英, 福岡正恒:性腺とサイトカイン. 内分泌・糖尿病科 3:56-62, 1996.
-
7) 深田順一:副腎とサイトカイン-その相互作用のメカニズムについて-. 内分泌・糖尿病科 3:1-8, 1996.
-
8) Hobisch A, Eder IE, Putz T:Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res. 58:4640-4645, 1998.
-
12) Blalock JE:The immune system as a sensory organ. J. Immunol. 132:1067-1070, 1984.
-
13) Kruszewska B, Felten SY, Moynihan JA:Alteration in cytokine and antibody production following chemical sympathectomy in two strains of mice. J. Immmol. 155:4613-4620, 1995.
-
14) 海塚安郎, 堀 哲郎:脳による免疫系の修飾-条件付け-. 神経内分泌免疫学(井村裕夫・他編). 朝倉書店, 東京, 1993, p90-94.
-
15) 深田順一:サイトカインと副腎機能. 内分泌・糖尿病科 1:216-226, 1995.
-
27) Fingerele-Rowson G, Koch P, Bikoff R et al.:Regulation of macrophage migration inhibitory factor expression by glucocorticoids in vivo Am. J. Pathol. 162:47, 2003.
-
43) Shimomura I, Funahashi T, Matsuzawa Y:Significance of adipocytokine, fat-derived hormones, in metabolic syndrome Tanpakushitsu Kakusan Koso 47:1896-1903, 2002.
-
45) Yokota T, Oritani K, Takahashi I et al.:Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96:1723-1732, 2000.
-
73) Ogata Y, Kukita A, Kukita T et al.:A novel role of IL-15 in the development of osteoclasts:inability to replace its activity with IL-2. J. Immunol. 162:2754-2760, 1999.
-
74) Weitmann MN, Cenci S, Rifas L et al.:Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogerlic cytokines. Blood 96. 1873-1878, 2000.
-
77) Takayanagi H, Ogasawara K, Hida S et al.:Tcellmediated regulation of osteoclastogenesis by signaling cross-talk between RANKL and IFN-γ. Nature 416:744-749, 2002.
P.553 掲載の参考文献
-
3) Navellhan P, Hassanl H, Lucas G et al:Redused antinociception and plasma extravasation in mice lacking a neuropeptide Y receptor. Nature 409:513-517, 2001.
-
4) Felten DL, Felten SY, CarIson SL et al.:Noradrenergic and peptidergic innervation of lymphoid tissue. J. Immunol. 135:755-765, 1985.
-
5) Kohm AP, Sanders VM:Norepinephrine and beta2-adrenergic receptor stimulation regulate CD4+T and Blymphocyte function in vitro and in vivo. Pharrnacol Rev. 53:487-525, 2001.
-
6) Michel MC, Beck-Sickinger A, Cox H et al.:International union of pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol. Rev. 50:143-150, 1998.
-
7) Lundberg JM:Pharmacology of cotransmission in the autonomic nervous system:Integrative aspects on amines, neuropeptides, adenosinetriphosphate, amino acids and nitric oxide. Pharmacol. Rev. 48:113-178, 1996.
-
13) Dimitrijevic M, Stanoj evic S, Vujic V et al.:Effect of neuropeptide Y on inflammatory paw edema in the rat:involvement of peripheral NPY YI and Y5 receptors and interaction with dipeptidyl-peptidase IV (CD26). J. Neuroimmunol 129:35-42, 2002.
-
20) HoPPener JW, Steenbergh PH, Zandberg J et al.:The second human calcitonin/CGRP gene is located on chromosome 11. Hum. Genet. 70:259-263, 1985.
-
28) Tokoyoda K, Tsujikawa K, Ono Y et al.:Up-regulation of IL-4 production by the activated cAMP/PKA pathway in CD3/CD28-stimulated naive Tcells. (submitted) 2003.
-
32) Aoki-Nagase T, Nagase T, Oh-Hashi Y et al.:Attenuation of antigen-induced airway hyper-responsiveness in CGRP-deficient mice. Am. J. Physiol. Lung. Cell. Mol. Physiol. 283:963-970, 2002.
-
34) Harmar A, Arimura A, Gozes I et al:Nomenclature of receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating Polypeptide (PACAP) . Pharmacol Rev. 50:265-270, 1998.
-
38) Delgado M, Munoz-Elias EJ, Gomariz RP et al.:Vasoactive intestinal peptide and pituitary adenylate cyclase-activating Polypeptide enhance IL-10 production by murine macrophages:in vitro and in vivo studies. J. Immunol. 162:1707-1716, 1999.
-
39) Martinez C, Delgado M, Pozo D et al.:Vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide modulate endotoxin-induced IL-6 production by murine peritoneal macrophages. J. Leuk, Biol. 63:591-601, 1998.
-
40) Delgado M, Ganea D:Vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide inhibit IL-12 transcription by regulating NFκB and Ets activation. J. Biol. Chem. 274:31930-31940, 1999.
-
41) Delgado M, Munoz-Elias EJ, Kan Y et al.:Vasoactive intestinal peptide and pituitary adenylate cyclaseactivating polypeptide inhibit TNFatranscriptional activation by regulating NF-κB and CREB/c-jun. J. Biol. Chem. 273:31427-31436, 1998.
-
42) Delgado M, Sun W, Leceta J et al.:VIP and PACAP dufferentially regulate the costimulatory activity of resting and activated macrophages through the modulation of B7. 1 and B7. 2 expression. J. Immunol 163:4213-4223, 1999.
-
43) Delgado M, Leceta J, Gomariz RP et al.:VIP and PACAP stimulate the induction of Th2 responses by upregulating B7. 2 expression. J. Immunol. 163:3629-3635, 1999.
-
46) Delgado M, Martinez C, Pozo D et al.:Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclaseactivating polypeptide (PACAP) protect mice from lethal endotoxemia through the inhibition of TNFa and IL-6. J Immunol. 162:1200-1205, 1999.
-
49) Regoli D, Boudon A, Fauchere JL:Receptors and antagonist's for substance P and related peptides. Pharmacol. Rev. 46:551-594, 1994.
-
50) Rameshwar P, Gascon P, Ganea D:Stimulation of IL-2 production in murine lymphocytes by substance-P and related tachykinins. J. Immunol. 151:2484-2496, 1993.
-
52) Kincy-Cain T, Bost KL:Substance P-induced IL-12 production by murine macrophages. J. Immunol 158:2334-2339, 1997.
-
54) Blum AM, Metwali A, Cook G et al:Substance P modulates antigen-induced, IFN-γproduction in murine Schistosomiasis mansoni J. Immunol. 151:225-233, 1993.
-
58) Nenan S, Germain N, Lagente V et al.:Irlhibition ofinflammatory cell recruitment by the tachykinin NK3-receptor antagonist, SR 142801, in a murine model of asthma. Eur. J. Pharmacol. 421:201-205, 2001.
-
59) Reubi JC, Horisberger U, Kappeler A et al.:Localization of receptors for vasoactive intestinal peptide, somatostatin, and substance P in distinct compartments of human lymphoid organs. Blood 92:191-197, 1998.
-
66) Bergeijk JD, Meeteren ME, Tak CJ et al.:Somatostatin does not attenuate intestinal injury in dextran sodium sulphate-induced subacute colitis. Mediators Inflamm. 7:169-173, 1998.
-
69) Blum AM, Metwali A, Mathew RC et al.:T iymphocytes in murine Schistosomiasis mansoni have somatostatin receptors and respond to somatostatin with decreased IFN-gamma secretion. J. Immunol 149:3621-3626, 1992.
生体内での主な役割
P.568 掲載の参考文献
-
1) Gresser I, Tovey MG, Bandu ME et al.:Role of interferon in the pathogenesis of virus diseases in mice as demonstrated by the use of anti-interferon serum I. Rapid evolution of encephalomyocarditis virus infection. J. Exp. Med. 144:1305-1315, 1976.
-
12) Alexopoulou L, Holt AC, Medzhitov R et al.:Recognition of double stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413:732-738, 2001.
-
13) Kurt-Jones EA, Popova L, Kwinn L et al.:Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol 1:398-401, 2000.
-
17) Oshimi H, Matsumoto M, Funami K et al.:TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-γ induction. Nat. Immunol. 4:161-167, 2003.
-
20) Chamaillard M, Hashimoto M, Horie Y et al.:An essential role for NODI in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol 4:702-707, 2003.
-
25) Micell-Richard C, Lesage S, Rybolad M et al:CARD15 mutation in Blau syndrome. Nat. Genet. 29: 19-20, 2001.
-
33) Lu B, Rutledge BJ, Gu L et al.:Abnormalities in monocyte recruitment and cytokine suppression in monocyte chemoattractant protein 1-deficient mice. J. Exp. Med 187:601-608, 1999.
-
34) Rutledge BJ, Rayburn H, Rosenberg R et al.:High level monocyte chemoattractant protein-1 expression in transgenic mice increases their susceptibility to intracellular pathogen. J. Immunol 155:4838-4843, 1995.
-
35) Cook DN, Smithies O, Strieter RM et al.:CD8+Tcells are a biologically relevant source of macrophage inflammatory protein-1 a in vivo J. Immunol 162:5423-5428, 1999.
-
45) Pflanz S, Timans JC, Cheung J et al.:IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity 16:779-790, 2002.
-
47) Sugawara I, Yamda H, Kaneko H et al.:Role of interleukin-18 (IL-18) in mycobacterial infection in IL-18-gene-disrupted mice. Infect. Immun. 67:2585-2589, 1999.
-
50) Neighbors M, Xu X, Barrat FJ et al.:Acritical role for interleukin 18 in primary and memory effector responses toListeria monocytogenes that expands beyond in effects on interferon γ production. J. Exp. Med. 194:343-354, 2001.
-
51) Cooper AM, Dalton DK, Stewart TA et al.:Disseminated tuberculosis in IFN-γ gene-disruptedmice. J. Exp. Med. 178:2243-2248, 1993.
-
52) Flynn JL, Chan J, Triebold KJ et al.:An essential role for interferon-γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178:2249-2254, 1993.
-
53) Huang S, Hendriks W, Althage A et al.:Immuneresponse in mice that lack the interferon-γ receptor. Science 259:1742-1745, 1993.
-
54) Newport MJ, Huxley CM, Huston S et al.:Amutation in the interferon-γ receptor gene and susceptibility to mycobacterial infection. N. Engl. J. Med. 335:1941-1949, 1996.
-
55) Jouanguy E, Altare F, Lamhamedi S et al.:Interferon-γ receptor deficiency in an infant with fatal Bacille Calmette-Guerin infection. N. Engl. J. Med. 335:1956-1962, 1996.
-
58) Flynn JL, Goldstein MM, Chan J et al.:Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:561-572, 1995.
-
70) Dai W, K6hler G, Brombacher F:Both innate and acquired immunity to Listeria monocytogenes infection are increased in IL-10-deficient mice. J. Immunol. 150:2259-2267, 1997.
-
73) Nakane A, Okamoto M, Asano M et al.:Endogenous gamma interferon, tumor necrosis factor, and interlekin-6 in Staphylococcus aureus infection in mice. Infect. Immun. 63:1165-1172, 1995.
-
77) Hultgren O, Eugster H-P, Sedgwick JD et al.:TNF/lymphotoxin-adouble-mutant mice resist septic arthritis but display increased mortality in response to Staphylococcus aureus J. Immunol. 161:5937-5942, 1998.
-
78) Zhau X-Y, Tarkowski A:Impact of interferon-γreceptor deficiency on experimental Staphylococcus aureus septicemia and arthritis. J. Immunol. 155:5736-5742, 1995.
-
79) Wei X-Q, Leung BP, Niedbala W et al.:Altered immune responses and susceptibility to Leishmania major and Staphylococcus aureus infection in IL-18-deficient mice. J. Immunol. 163:2821-2828, 1999.
-
81) MUIIer U, Steinhoff U, Reis LFL et al.:Functional role of type I and type II interferons in antiviral defense. Science 264:1918-1921, 1994.
-
83) Dupuis S, Jouanguy E, Al-Hajjar S et al Impaired response to interferon-α/β and lethal viral disease in human STATI deficiency. Nat. Genet. 33:388-391, 2003.
-
84) Guidotti LG, Chisari FV:Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol. 19:1965-1991, 2001.
-
85) Cousens LP, Peterson R, Hsu S et al.:Two roads diverged:interferon-α/β-and interleukin-12-mediated pathways in promoting T cell interferon γ responses during viral infection. J. Exp. Med. 189:1315-1328, 1999.
-
88) Nguyen KB, Watford WT, Salomon R et al.:Critical role for STAT4 activation by type 1 interferons in the interferon-γresponse to viral infection. Science 297:2063-2066, 2002.
-
89) Sheppard P, Kindsvogel W, Xu W et al.:IL-28, IL-29 and their class n cytokine receptors IL-28R. Nat. Immunol. 4:63-68, 2003.
-
90) Kotenko SV, Gallagher G, Daurin W et al.:IFN-λs mediate antiviral protection through a distinct class Hcytokine receptor complex. Nat. Immunol. 4:69-77, 2003.
-
91) Badovunac VP, Hamilton SE, Harty JT:Viral infection results in massive T cell expansion and mortality in vaccinated perform-deficient mice. Immunity 18:463-474, 2003.
P.581 掲載の参考文献
-
3) Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore Jp, Paxton WA:HIV-lentry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5 [see comments]. Nature 381:667-673, 1996.
-
4) Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peipe SC, Schall TJ, Littman DR, Landau NR:Identification of a major co-receptor for primary isolates of HIV-1[see comments]. Nature 381:661-666, 1996.
-
6) Ashorn PA, Berger EA, Moss B:Human immunodeficiency virus envelope glycoprotein/CD4-mediated fussion of nonprimate cells with human cells. J. Virol. 64:2149-2156, 1990.
-
8) Fenyo EM, Morfeldt-Manson L, Chiodi F, Lind B, von Gegerfelt A, Albert J, Olausson E, Asjo B:Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates. J. Virol. 62:4414-4419, 1988.
-
9) Alkhatib G, Broder CC, Berger EA:Cell type-specific fusion cofactors determine human immunodeficiency virus type 1 tropism for T-cell lines versus primary macrophages. J. Virol 70:5487-5494, 1996.
-
15) Peiper SC, Wang ZX, Neote K, Martin AW, Showell HJ, Conklyn MJ, Ogborne K, Hadley TJ, Lu ZH, Hesselgesser J et al.:The Duffy antigen/receptor for chemokines (DARC) is expressed in endothelial cells of Duffy negative individuaIs who iack the erythrocyte receptor. J Exp Med 181:1311-1317, 1995.
-
19) Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F, Schwartz O, Heard JM, Clark-Lewis I, Legler DF, Loetscher M, Baggiolini M, Moser B:The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell line-adapted HIV-1. Nature 382:833-835, 1996.
-
21) Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, Parmentier M, Collman RG, Doms RW:A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85:1149-1158, 1996.
-
22) Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR, LaRosa G, Newman W, Gerard N, Gerard C, Sodroski J:The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85:1135-1148, 1996.
-
28) Berger EA, Doms RW, Fenyo EM, Korber BT, Littman DR, Moore Jp, Sattentau QJ, Schuitemaker H, Sodroski J, Weiss RA:A new classification for HIV-1[letter]. Nature 391:240, 1998.
-
30) Zhang L, Yu W, He T, Yu J, Caffrey RE, Dalmasso EA, Fu S, Pham T, Mei J, Ho JJ, Zhang W, Lopez P, Ho DD:Contribution of human alpha-defensin l, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 298:995-1000, 2002.
-
31) Geiben-Lynn R, Kursar M, Brown NV, Addo MM, Shau H, Lieberman J, Luster AD, Walker BD:HIV-1antiviral activity of recornbinant natural killer cell enhancing factors, NKEF-A and NKEF-B, members of the peroxiredoxin family. J. Biol Chem. 278:1569-1574, 2003.
-
32) Geiben-Lynn R, Brown N, Walker BD, Luster AD:Purification of a modified form of bovine antithrombin III as an HIV-1 CD8+ T-cell antiviral factor. J. Biol Chem. 277:42352-42357, 2002.
-
34) Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR:Homozygous defect in HIV-1coreceptor accounts for resistance of some multiply-exposed individuaIs to HIV-1 infection. Cell 86:367-377, 1996.
-
35) Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M:Resistance to HIV-1 infection in caucasian individuaIs bearing mutant alleles of the CCR-5 chemokine receptor gene[see comments]. Nature 382:722-725, 1996.
-
36) Stephens JC, Reich DE, Goldstein DB, Shin HD, Smith MW, Carrington M, Winkler C, Huttley GA, Allikmets R, Schriml L, Gerrard B, Malasky M, Ramos MD, Morlot S, Tzetis M, Oddoux C, di Giovine FS, Nasioulas G, Chandler D, Aseev M, Hanson M, Kalaydjieva L, Glavac D, Gasparini P, Dean M et al.:Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am. J. Hum. Genet. 62:1507-1515, 1998.
-
37) Smith MW, Dean M, Carrington M, Winkler C, Huttley GA, Lomb DA, Goedert JJ, OIBrien TR, Jacobson LP, Kasiow R, Buchbinder S, Vittinghoff E, Vlahov D, Hoots K, Hilgartner MW, 01Brien SJ:Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS) , Multicenter Hemophilia Cohort Study (MHCS) , San Francisco City Cohort (SFCC), ALIVE Study. Science 277:959-965, 1997.
-
38) Winkler C, Modi W, Smith MW, NeIson GW, Wu X, Carrington M, Dean M, Honjo T, Tashiro K, Yabe D, Buchbinder S, Vittinghoff E, Goedert JJ, O'Brien TR, Jacobson LP, DeteIs R, Donfield S, Willoughby A, Gomperts E, Vlahov D, Phair J, O'Brien SJ:Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS) , Multicenter AIDS Cohort Study (MACS) , Multicenter Hemophilia Cohort Study (MHCS) , San Francisco City Cohort (SFCC) [see comments]. Science 279:389-393, 1998.
-
39) Shioda T, Nakayama EE, Tanaka Y, Xin X, Liu H, Kawana-Tachikawa A, Kato A, Sakai Y, Nagai Y, Iwamoto A:Naturally occurring deletional mutation in the C-terminal cytoplasmic tail of CCR5 affects surface trafficking of CCR5. J. ViroL 75:3462-3468, 2001.
-
40) Martin MP, Dean M, Srnith MW, Winkler C, Gerrard B, Michael NL, Lee B, Doms RW, Margolick J, Buchbinder S, Goedert JJ, O'Brien TR, Hilgartner MW, Vlahov D, O'Brien SJ, Carrington M:Genetic acceleration of AIDS progression by a promoter variant of CCR5. Science 282:1907-1911, 1998.
-
41) Liu H, Chao D, Nakayama EE, Taguchi H, Goto M, Xin X, Takamatsu JK, Saito H, Ishikawa Y, Akaza T, JujiT, Takebe Y, Ohishi T, Fukutake K, Maruyama Y, Yashiki S, Sonoda S, Nakamura T, Nagai Y, Iwamoto A, Shioda T:Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc. Natl. Acad. Sci. USA 96:4581-4585, 1999.
-
42) Nakayama EE, Hoshino Y, Xin X, Liu H, Goto M, Watanabe N, Taguchi H, Hitani A, Kawana-Tachikawa A, Fukushima M, Yamada K, Sugiura W, Oka SI, Ajisawa A, Sato H, Takebe Y, Nakamura T, Nagai Y, Iwamoto A, Shioda T:Polymorphism in the interleukin-4 promoter affects acquisition of human immunodeficiency virus type 1 syncytium-inducing phenotype. J. Virol. 74:5452-5459, 2000.
-
43) Shin HD, Winkler C, Stephens JC, Bream J, Young H, Goedert JJ, O'Brien TR, Vlahov D, Buchbinder S, Giorgi J, Rinaldo C, Donfield S, Willoughby A, σBrien SJ, Smith MW:Genetic restriction of HIV-1 pathogenesis to AIDS by promoter alleles of IL10. Proc. Natl. Acad. Sci. USA 97:14467-14472, 2000.
-
44) Foster CB, Lehrnbecher T, SamueIs S, Stein S, Mol F, Metcalf JA, Wyvill K, Steinberg SM, Kovacs J, Blauvelt A, Yarchoan R, Chanock SJ:An IL6 promoter polymorphism is associated with a lifetime risk of development of Kaposi sarcoma in men infected with human immunodeficiency virus. Blood 96:2562-2567, 2000.
-
46) Pastinen T, Liitsola K, Niini P, Salminen M, Syvanen AC, O'Brien TR, McDermott DH, Ioannidis JP, Carrington M, Murphy PM, Havlir DV, Richman DD:Contribution of the CCR5 and MBL genes to susceptibility to HIV type 1 infection in the Finnish population. AIDS Res. Hum. Retroviruses 14:695-698, 1998.
-
47) Mariani R, Rutter G, Harris ME, Hope TJ, Krausslich HG, Landau NR:Ablock to human immunodeficiency virus type 1 assembly in murine cells. J. Virol. 74:3859-3870, 2000.
P.589 掲載の参考文献
-
5) 義江 修:ケモカインスーパーファミリーの構造と機 能. ケモカインハンドブック. (義江 修・他監修). 秀潤社, 2000, p10-11.
-
7) Mossman TR, Chervinski H, Bond MW et al.:Two types of mouse helper T cells (I) . Definition of acccording to profiles of lymphokine activities and secreted proteins. J. Immunol. 136:2348-2353, 1986.
-
8) Romagnnani S:Lymphokine production by human T cells in desease states. Ann. Rev. Immunol. 12:227-257, 1994.
-
9) Moreland LW, Baumgartner SW, Shiff MH et al.:Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor (p75)-Fc fusion protein. N. Engl. J. Med. 337:141-147, 1997.
P.596 掲載の参考文献
-
5) Hopken UE, Lu B, Gerard NPet al.:The C5a chemoattractant receptor mediates mucosal defense to infection. Nature 383:86-89, 1996.
-
6) Hopken UE, Lu B, Gerard NP et al.:Impaired inflammatory responses in the reverese arthus reaction through genetic deletion of the C5a receptor. J. Exp. Med. 186:749-456, 1997.
-
10) Harada A, Mukaida N, Matsushima K:Interleukin 8 as a novel target for intervention therapy in acute inflammatory diseases. Mol. Med. Today 2:482-489, 1996.
-
15) Nakano H, Mori S, Yonekawa H et al.:A novel mutant gene involved in T-lymphocyte-specific homing into peripheral lymphoid organs on mouse chromosome 4. Blood 91:2886-2895, 1998.
-
17) Onai N, Zhang Y, Yoneyama H et al:Impairment of lymphopoiesis and myelopoiesis in mice reconstituted with bone marrow-hematopoietic progenitor cells expressing SDF-1-intrakine. Blood 96:2074-2080, 2000.
-
18) Ueno T, Hara K, Willis MS et al.:Role of CCR71igands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity 16:205-218, 2002.
-
22) O'Carra A:Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8:275-283, 1998.
-
31) Tang HL, Cyster JG:Chemokine up-regulation and activated T cell attraction by maturing dendritic cells. Science 284:819-822, 1998.
P.607 掲載の参考文献
-
1) 義江 修, 野見山尚之, 宮坂昌之(監修):ケモカインハンドブック. 秀潤社, 2000.
-
4) Romagnani S:Cytokines and chemoattractants in allergic inflammation. Mol. Immunol. 38:881-885, 2001.
-
5) Honey B, Alenius H, Zlotnik A et al.:CCL27-CCRIO interactions regulate T cell-mediated skin inflammation. Nat. Med. 8:157-165, 2002.
-
9) 宮坂昌之(監修):接着分子ハンドブック. 秀潤社, 2000.
-
14) Steegmaier M, Levinovitz A, Vestweber D et al.:The E-selectin-ligand ESL-1 is a variant of a receptor for fibroblast growth factor. Nature 373:615-620, 1995.
-
17) Ebisuno Y, Tanaka T, Miyasaka M et al.:The B cell chemokine CXC chemokoine ligand 13/B lymphocyte chemoattractant is expressed in the high endothelial venules of lymph node and Peyer’s patches and affect Bcell trafficking across high endothelial venules. J. Immunol 171:1642-1646, 2003.
P.618 掲載の参考文献
-
1) 植木重治, 茆原順一:好酸球. アレルギー・免疫 10:950-957 2003.
-
2) Leckie MJ, ten Brinke A, Khan J, Diamant Z, O’Connor BJ, WalIs CM, Mathur AK, Cowley HC, Chung KF, Djukanovic R, Hansel TT, Holgate ST, Sterk PJ, Barnes PJ:Effect of an interleukin-5 blocking monoclonal antibody on eosinophiIs, airway hyper-responsiveness, and the late asthmatic response. Lancet 356:2144-2148, 2000.
-
3) 宮坂信之:サイトカインとは-サイトカインと病態. Mebio. 11(2):16-17, 1994.
-
4) Vellenga E, Essekink MT, Straatcn J, Stulp BK, DeWoff THM, Brons R Giannotti J, Smiin JW, Halie R:The supportive effects of IL-70n eosinophil progenitors from human bone marrow cells can be blocked by anti-IL-5. J. Immunol. 149:2992-2995, 1992.
-
5) Warringa RA, Schweizer RC, Maikoe T, Kuijper PHM, Bruijnzeal PLB, Koenderman L:Modulation of eosinophil chemotaxis by interleukin-5. Am. J. Respir. Cell. Mol. Biol. 7:631-6361992.
-
7) Kay AB, Ying S, Varney V, Gaga M, Durham SR, Moqbel R, Wardlaw AJ, Hamid Q:Messenger RNA expression of the cytokine gene cluster interleukin 3 (IL-3) , IL-4, IL-5 and granulocyte/macrophage colony-stimulating factor, in allergic-induced late-phase cutaneous reaction in atopic subjects. J. Exp. Med. 173:775-778, 1991.
-
10) 茆原順一, 三戸 聡:好酸球の特性. アレルギー科 9:58-67, 2000.
-
12) Stoeckle MY, Barker KA:Two burgeoning families of platelet factor 4-related proteins:mediators of the inflammatory response. New. Biol. 2:313-323, 1990.
-
13) 松島鋼治:ケモカインの多様な機能. (茆原順一編), ケモカインと疾患, 医薬ジャーナル社, 大阪, 2000, p19-22.
-
14) 長澤丘司:ケモカインと造血. (茆原順一編), ケモカインと疾患, 医薬ジャーナル社, 大阪, 2000, p85- 95.
-
19) Ahuja SK, Murphy PM:Molecular piracy of mammalian interleukin-8 receptor type B by herpesvirus saimiri. J. Biol. Chem. 268:20691-20694, 1993.
-
22) Metzger WJ, Henricksen RA, Zaleski T, Donnelly A:Evidence for platelet release and thrombin generation in early and late asthmatic response. (abstract) Clin. Res. 31:A164, 1983.
-
23) 安場広高, 木野稔也, 福田康二:気管支喘息発作時の血小板活性化の関与-洗浄血小板ATP放出能および 血漿β-TG, Platelet Factor 4レベル, β-TG/PF4比 についての検討-. アレルギー 37:1152, 1988.
-
28) 茆原順一, 齋藤紀先:好酸球と接着分子. アレルギー 科 9:97-102, 2000.
-
30) Chihara J, Maruyama I, Yasuba H, Yasukawa A, Yamamoto T, Kurachi D, Mouri T, Seguchi M, Nakajima S:Possible induction of intercellular adhesion molecule-1 (ICAM-1) expression on endothelial cells by platelet-activating factor (PAF) . J. Lipid. Mediat. 5:159-162, 1992.
-
34) 茆原順一, 植木重治, 山田佳之:炎症関連因子-好酸球, 接着分子, ケモカインなど. アレルギー科 8:24-31, 1999.
-
36) Ying S, Meng Q, Zeibecoglou K, Robinson DS, Macfar-lane A, Humbert M, Kay AB:Eosinophil chemotactic chemokines (eotaxin, eotaxin-2, RANTES, monocyte chemoattractant protein-3 (MCP-3), and MCP-4), and C-C chemokine receptor 3 expression in bronchial biopsies from atopic and nonatopic (lntrinsic) asthmatics. J. Immunol. 163:6321-6329, 1999.
-
38) Beck LA, Dalke S, Leiferman KM, Bickel CA, Hamilton R, Rosen H, Bochner BS, Schleimer RP:Cutaneous injection of RANTES causes eosinophil recruitment:comparison of nonallergic and allergic human subjects. J. Immunol. 159:2962-2972, 1997.
-
40) Chihara J, Yasuba H, Tsuda A, Urayama O, Saito N, Honda K, Kayaba H, Yamashita T, Kurimoto F, Yamada H:Elevation of the plasma level of RANTES during asthma attacks. J. Allergy Clin. Immunol. 100:S52-55, 1997.
-
49) Sannohe S, Adachi T, Hamada K, Honda K, Yamada Y, Saito N, Cui CH, Kayaba H, Ishikawa K, Chihara J: Upregulated response to chemokines in oxidative metabolism of eosinophil in asthma and allergic rhinitis. Eur. Respir. J. 21:925-931, 2003.
-
60) Stellato C, Collins P, Ponath PD, Soler D, Newman W, La Rosa G, Li H, White J, Schwiebert LM, Bickel C, Liu M, Bochner BS, Williams T, Schleimer RP:Production of the novel C-C chemokine MCP-4 by air-way cells and comparison of its biological activity to other C-C chemokines. J. Clin. Invest. 99:926-936, 1997.
-
62) Kukita T, Nomiyama H, Ohmoto Y, Kukita A, Shuto T, Hotokebuchi T, Sugioka Y, Miura R, Iijima T:Macrophage inflammatory protein-1 alpha (LD78) expressed in human bone marrow:its role in regulation of hematopoiesis and osteoclast recruitment. Lab. Invest. 76:399-406, 1997.
-
64) Gonzalo JA, Pan Y, Lloyd CM, Jia GQ, Yu G, DussaultB, Powers CA, Proudfoot AE, Coyle AJ, Gearing D, Gutierrez-Ramos JC:Mouse monocyte-derived chemokine is involved in airway hyperreactivity and lung inflammation. J. Immunol. 163:403-411, 1999.
-
65) Campbell JJ, Haraldsen G, Pan J, Rottman J, Qin S, Ponath P, Andrew DP, Warnke R, Ruffing N, Kassam N, Wu L, Butcher EC:The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 400 (6746):776-780, 1999.
-
67) Oyamada H, Kamada Y, Kuwasaki T, Yamada Y, Kobayashi Y, Cui CH, Honda K, Kayaba H, Saito N, Chihara J:CCR3 mRNA expression in bronchial epithelial cells and various cells in allergic inflammation. Int. Arch. Allergy Immunol. 120 S1:45-47, 1999.
-
68) Cui CH, Adachi T, Oyamada H, Kaymada Y, Kuwasaki T, Yamada Y, Saito N, Kayaba H, Chihara J:The role of mitogen-activated protein kinases in eotaxin-induced cytokine production from bronchial epithelial cells. Am. J. Respir, Cell. Mol. Biol. 27:329-335, 2002.
-
69) Fujisawa T, Kato Y, Atsuta J, Terada A, Iguchi K, Kamiya H, Yamada H, Nakajima T, Miyamasu M, Hirai K:Chemokine production by the BEAS-2B human bronchial epithelial cells:differential regulation of eotaxin, IL-8, and RANTES by TH2-and THl-derived cytokines. J. Allergy Clin. Immunol. 105:126-133, 2000.
-
71) Gonzalo JA, Lloyd CM, Wen D, Albar Jp, WelIs TN, Proudfoot A, Martinez-AC, Dorf M, Bjerke T, Coyle AJ, Gutierrez-Ramos JC:The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness. J. Exp. Med. 188:157-167, 1998.
-
73) Ueki S, Adachi T, Bourdeaux J, Oyamada H, Yamada Y, Hamada K, Kanda A, Kayaba H, Chihara J:Expression of PPAR gamma in eosinophiIs and its functionalrole in survival and chemotaxis. Immunol. Lett. 86:183, 2003.
P.631 掲載の参考文献
-
4) Ito M, Hiramatsu H, Kobayashi K et al.:NOD/SCID γ, null mouse:an excellent recipient mouse model for engraftment of human cells. Blood 100:3175-3182, 2002.
-
5) Hiramatsu H, Nishikomori R, Heike T et al.:Complete reconstitution of human lymphocytes from cord blood CD34+ cells using NOD/SCID//γc, null mice model. Blood 102:873-880, 2003.
-
6) Kambe N, Hiramatsu H, Nishikomori R, et al:Human mast cell development in NOD/SCID/γc null mice after transplantation of cord blood hematopoietic stem cells. Blood 2004.
-
29) Sui X, Tsuji K, Tajima S, Tanaka R, Muraoka K, Ebihara Y, Ikebuchi K, Yasukawa K, Taga T, Kishimoto T, Nakahata T:Erythropoietin-independent erythrocyte production:signaIs through gP130 and c-Kit dramatically promote erythropoiesis from human CD34+ cells. J. Exp. Med. 183:837-845, 1996.
-
30) Sui X, Tsuji K, Ebihara Y, Tanaka R, Muraoka K, Yoshida M, Yamada K, Yasukawa K, Taga T, Kishimoto T, Nakahata T:Soluble IL6 receptor with IL-6 stimulates megakaryopoiesis from human CD34+ cells through gp130 signaling. Blood 93:2525-2532, 1999.
サイトカインの臨床応用
P.639 掲載の参考文献
-
6) Takayama T, Satoh M, Tahara T:Intra-tumor injections of dendritic cells combined with local radiotherapy and systemic administration of IL-2 for advanced cancer patients. 4th International Expert Meeting on Clinical Dendritic Cell Immunotherapy, Nertherlands, June 13-16, 2003.
-
7) Kataoka M, Fujiwara T, Tanaka N:Gene therapy for lung cancer. Nippon Geka Gakkai Zasshi 103:244-249, 2002.
-
16) Tahara H, Zeh HJ, Storks WJ et al.:Fibroblasts genetically engeneered to secrete interleukin 12 can suppress tumor growth and induce antitumor immunity to a murine melanoma in vivo. Cancer Res. 54:182-189, 1994.
-
17) Nishioka Y, Hirao M, Robbins PD, Lotze MT, Tahara H:Induction of systernic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12. Cancer Res. 59:4035-4041, 1999.
P.647 掲載の参考文献
-
3) 竹内 勤, 天野宏一:新しい治療法の考え方. 生物製剤の現状と展望. 日本内科学会雑誌89:2146-2153, 2000.
-
4) 竹内 勤, 天野 宏一:関節リウマチ-生物製剤. 最新医学別冊8:183-190, 2002.
-
17) Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT:Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure:results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107:3133-3140, 2003.
-
20) Bathon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH, Keystone EC, Genovese MC, Wasko MC, Moreland LW, Weaver AL, Markenson J, Fink B:A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N. Engl. J. Med. 343:1586-1593, 2000.
-
21) Genovese MC, Bathon JM, Martin WM, Fleischmann RM, Tesser JR, Schiff MH, Keystone EC, Wasko MC, Moreland LW, Weaver AL, Markenson J, Cannon GW, Spencer-Green G, Finck BK:Etanercept versus methotrexate in patients with early rheumatoid arthritis:Two-year radiographic and clinical outcomes. Arthritis Rheum 46:1443-1450, 2002.
-
23) den Broeder A, van de Putte LBA, Rau R, Schattenkirchner M, van Riel PLCM, Sander O, Binder C, Fenner H, Bankmann Y, Velagapudi R, Kempeni J, Kupper H:Asingle dose, placebo controlled study of the fully human anti-tumor necrosis factor-[alpha]antibody adalimumab (D2E7) in patients with rheumatoid arthritis. J. Rheumatol. 22:2288-2298, 2002.
-
26) Cavagna L, CaporaU R, Epis O, Bobbio-Pallavicini F, Montecucco C:Infliximab in the treatment of adult Still's disease refractory to conventional therapy. Clin. Exp. RheumatolRheumatol 19:329-332, 2001.
-
31) Gottenberg J-E, Merle-Vincent F, Bentaberry F, Allanore Y, Berenbaum F, Fautrel B, Combe B, Durbach A, Sibilia J, Dougados M, Mariette X:Anti-tumor necrosis factor therapy in fifteen patients with AA amyloidosis secondary to inflammatory arthritides:A followup report of tolerability and efficacy. Arthritis Rheum. 48:2019-2024, 2003.
-
39) Nishimoto N, Yoshizaki K, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Hashimoto J, Azuma J, Kishimoto T:A mult-center, randomized, double-blind placebo-controlled triaIs of humanized anti-IL-6 receptor monoclonal antibody (MRA) in rheumatoid arthritis (RA) . Arthritis Rheum. 47:S559, 2002.
P.659 掲載の参考文献
-
37) Kim SH, Evans CH, Kim S et al.:Gene therapy for established murine collagen-induced arthritis by locai and systemic adenovirus-mediated delivery of interleukin-4. Arthritis Res. 2:293-302, 2000.
-
52) Jacob CO, van der Meide PH, McDevitt HO:In vivo treatment of (NZB×NZW) FI lupus-like nephritis with monoclonal antibody to gamma interferon. J. Exp. Med. 166:798-803, 1987.
-
98) W山enborg DO, Fordham SA, Cowden WB et al.:Cytokines and murine autoimmune encephalomyelitis:inhibition or enhancement of disease with antibodies to select cytokines, or by delivery of exogenous cytokines using a recombinant vaccinia virus system. Scand. J. Immunol. 41:31-41, 1995.
-
104) Dal Canto RA, Costa G, Shaw MD et al.:Local delivery of cytokines by retrovirally transduced antigen-specific TCR+hybridoma cells in experimental autoimmune encephalomyelitis. Eur. Cytokine Netw. 9:83-91, 1998.
P.672 掲載の参考文献
-
7) Calandra T, Baumgartner JD, Grau GF et al.:Prognostic values of tumor necrosis factor/cachectin, IL-1, interferon-a, and inteferon-γ in the serum of patients with septic shock. J. Infect. Dis. 161:982-987, 1990.
-
12) 瀬戸山陽子, 今井浄子, 石川隆之・他:非ポジキン悪性リンパ腫における血清可溶型IL-2レセプターa鎖 値測定の有用性. 臨床病理 42:834-842, 1994.
-
15) Ohozato H, Yoshizaki, K, Nishimoto N et al.:IL-6 as a new indicator for the inflammatory status:detection of serum levles of IL-6 and C-reactive protein follwing surgical oPeration. Surgery 3:201-209, 1992.