検索条件をクリア

書籍詳細

未契約
書籍名 新・分子骨代謝学と骨粗鬆症
出版社 メディカルレビュー社
発行日 2001-05-15
著者
  • 松本俊夫(編著)
ISBN 4896003802
ページ数 533
版刷巻号 第1版第1刷
分野
閲覧制限 未契約

本書では、骨格系の制御機構についての近年の先進的研究の成果をまとめ、現状を整理することを通じて、今後解明すべき課題とその意義を浮き彫りにすることを目指した。(序文より)

目次

  • 表紙
  • 序文
  • CONTENTS
  • Author List-執筆者一覧
  • 序論 骨格系の分子制御機構の解明とその骨代謝学への応用
    • 1 骨・軟骨細胞の分化・機能の制御とその調節因子
    • 2 骨粗鬆症の病態の解明と診断法の開発
    • 3 骨粗鬆症の治療法の開発
  • 第1章 骨・軟骨細胞の形成・分化の分子機構
    P.17閲覧
    • 1 骨・軟骨の微細構造
      • 1 軟骨組織
      • 2 骨組織
    • 2 軟骨細胞の分化制御と軟骨形成
      • 1 内軟骨性骨形成の機構
      • 2 軟骨分化を制御する成長分化因子
      • 3 軟骨分化を制御する基質蛋白質
      • 4 軟骨分化を制御する転写因子
      • 5 軟骨分化と軟骨形成研究のための細胞培養系
    • 3 造血幹細胞から破骨細胞への分化
      • 1 造血の系統発生
      • 2 造血の個体発生
      • 3 骨と骨髄の形成
      • 4 破骨細胞
      • 5 破骨細胞の分化制御
      • 6 破骨細胞分化と転写因子
    • 4 破骨細胞形成の制御機構
      • 1 破骨細胞の分化と機能を調節する骨芽細胞の役割
      • 2 マクロファージコロニー刺激因子(M-CSF)の破骨細胞分化における重要性
      • 3 破骨細胞の分化と機能を調節する腫瘍壊死因子(TNF)関連サイトカイン
      • 4 破骨細胞分化を制御するTリンパ球の役割
      • 5 TGF-βスーパーファミリーサイトカインとRANKL-RANK系とのクロストーク
    • 5 破骨細胞の機能とその調節
      • 1 破骨細胞の形態と酸・酵素分泌
      • 2 破骨細胞の活性化を調節するシグナル
      • 3 破骨細胞の生存期間の調節
    • 6 間葉系細胞からの骨芽細胞分化の転写制御
      • 1 runtファミリー遺伝子
      • 2 Cbfa1のゲノム構造と発現
      • 3 Cbfa1による骨芽細胞分化
      • 4 骨形成におけるCbfa1の位置づけ
    • 7 骨芽細胞の分化・機能調節因子とその作用
      • 1 骨芽細胞への分化を決定する転写・因子Cbfa1
      • 2 骨芽細胞の分化とBMP
      • 3 骨芽細胞の分化とヘッジホッグ
      • 4 IGF-I
      • 5 FGFs
    • 8 骨基質蛋白とその機能
      • 1 骨の非コラーゲン性蛋白
      • 2 オステオカルシン
      • 3 オステオネクチンのノックアウトマウス
      • 4 マトリックスグラ蛋白
      • 5 バイグリカン
      • 6 オステオポンチン
    • 9 骨芽細胞の成熟と骨基質の石灰化
      • 1 骨芽細胞の成熟
      • 2 骨基質の石灰化
    • 10 骨細胞(osteocyte)の形成と機能
      • 1 骨細胞の分化と形態的特徴
      • 2 骨細胞の機能
      • 3 骨における機械的刺激の伝達と骨細胞
  • 第2章 骨代謝調節因子の分子作用機構
    P.157閲覧
    • 1 核内受容体を介する転写調節の分子機構
      • 1 核内受容体スーパーファミリー
      • 2 核内受容体の構造と機能
      • 3 核内受容体のコンセンサス標的エンハンサー
      • 4 核内受容体による転写促進の分子メカニズム
      • 5 リガンド結合による受容体の構造変化と転写共役因子群との相互作用
      • 6 核内受容体転写共役因子複合体の機能
    • 2 エストロゲン受容体を介する転写調節
      • 1 ERの構造と機能
      • 2 ER異常症と骨
      • 3 ERの骨における下流応答遺伝子
    • 3 ビタミンD受容体を介する転写調節
      • 1 VDRによる転写活性化と転写抑制
      • 2 転写共役因子
      • 3 ビタミンD誘導体
      • 4 VDRのin vivoでの機能
    • 4 25-水酸化ビタミンD3-1α水酸化酵素の転写調節
      • 1 1α-水酸化酵素遺伝子のクローニング
      • 2 1α-水酸化酵素遺伝子の発現調節
    • 5 副甲状腺ホルモン/副甲状腺ホルモン関連蛋白受容体の機能
      • 1 PTHrP遺伝子欠損マウスにおける軟骨の異常
      • 2 PTHrP遺伝子過剰発現マウスにおける軟骨・骨の異常について
      • 3 PTH/PTHrP受容体欠損マウスの異常, およびPTHrPとindian hedgehogのネガティブループ(negative loop)について
      • 4 PTH/PTHrP受容体のプロモーター領域とpseudohypoparathyroidism type Ib
      • 5 Jansen型およびBlomstrand型骨幹端軟骨異形成症とPTH/PTHrP受容体
      • 6 constitutive active PTH/PTHrP受容体を発現するトランスジェニックマウスについて
      • 7 PTH/PTHrP受容体欠損キメラマウスの作製と解析
      • 8 第2, 第3のPTHまたはPTHrPに対する受容体の発見
      • 9 PTHrPの核小体移行について
    • 6 カルシウム感知受容体の機能
      • 1 CaSRの構造
      • 2 CaSRの発現と機能
      • 3 CaSR異常とCa代謝異常症
    • 7 TGF-βスーパーファミリー受容体とその情報伝達機構
      • 1 TGF-βスーパーファミリーの受容体
      • 2 TGF-βスーパーファミリーのシグナル伝達におけるSmadの役割
      • 3 Smadの構造
      • 4 MAPKとのクロストーク
      • 5 転写因子
      • 6 SmadのDNA結合領域
      • 7 骨代謝におけるTGF-βの機能的役割
      • 8 骨芽細胞や軟骨細胞分化におけるBMPおよびSmadの機能的役割
    • 8 インスリン/IGF-I情報伝達系による骨代謝の制御
      • 1 脊柱靱帯骨化症とインスリン
      • 2 IRS-1ノックアウトマウスの骨組織
    • 9 四肢形態形成と骨成長因子
      • 1 四肢形態形成のメカニズム
      • 2 形態形成制御因子と軟骨形成
    • 10 骨吸収性サイトカインとその作用機構
      • 1 IL-1とTNFα
      • 2 PGEによる骨吸収
      • 3 骨髄Bリンパ球造血と骨吸収
  • 第3章 骨粗鬆症の病態と診断の分子医学
    P.289閲覧
    • 1 エストロゲン欠乏による骨代謝変化
      • 1 エストロゲン欠乏による骨吸収亢進のメカニズム
      • 2 エストロゲンのカルシウム代謝に対する作用
    • 2 加齢による骨代謝変化
      • 1 加齢と骨粗鬆症
      • 2 老化に伴う骨・カルシウム代謝の変化
      • 3 高齢者の骨代謝における性ホルモンの役割
      • 4 老化モデルマウスにおける骨粗鬆症の病態
    • 3 副腎皮質ステロイドによる骨代謝変化
      • 1 Gの細胞内作用機構
      • 2 骨に対するGの作用機構
      • 3 G誘発性骨粗鬆症
      • 4 DHEAの骨への作用機構
      • 5 骨粗鬆症とDHEA(-S)
    • 4 慢性関節リウマチによる骨代謝変化
      • 1 ナース細胞
      • 2 RAにおける末梢血単球からの破骨細胞様細胞への分化
      • 3 RAナース細胞による軟骨破壊
    • 5 力学的負荷の軽減による骨代謝変化
      • 1 力学的負荷の軽減と骨動態
      • 2 力学的負荷を感知するメカニズム
      • 3 力学刺激のシグナル伝達機構
      • 4 力学的負荷軽減による骨髄細胞分化異常
      • 5 力学刺激に対する生体反応を修飾する因子
    • 6 骨微細構造と骨粗鬆症の画像診断
      • 1 マイクロCTとは
      • 2 マイクロCT装置とデータ収集・解析
      • 3 骨微細構造の定量化
      • 4 骨梁構造と骨力学特性の加齢変化
      • 5 骨強度に関係する骨梁構造パラメーター
      • 6 magnetic resonance imaging(MRI)
      • 7 シンクロトロン放射線を用いたマイクロCT
    • 7 骨形成マーカーによる骨形成過程の評価
      • 1 オステオカルシン
      • 2 骨型アルカリ性フォスファターゼ
      • 3 I型コラーゲンC末端ペプチド
    • 8 骨吸収マーカーによる骨吸収過程の評価
      • 1 骨吸収マーカーの測定法
      • 2 骨吸収マーカーと骨代謝
    • 9 遺伝子多型性と骨粗鬆症
      • 1 骨粗鬆症の病態と遺伝的素因解析の意義
      • 2 遺伝子多型性と疾患
      • 3 候補遺伝子の多型性と骨量との連関解析(association study)
      • 4 遺伝子多型性を用いた骨量に関する連鎖解析(linkage study)
      • 5 今後の展望:ポストシーケンスゲノム医学の進展のなかで
  • 第4章 骨粗鬆症治療薬の作用機序と効果
    P.403閲覧
    • 1 エストロゲンの作用と閉経後骨粗鬆症の治療
      • 1 骨粗鬆症と性差
      • 2 閉経後の骨量低下の推移
      • 3 エストロゲンの作用機序
      • 4 エストロゲン剤の種類
      • 5 エストロゲン剤の使い方
      • 6 エストロゲン(HRT)の効果
    • 2 選択的エストロゲン受容体モジュレーター(SERM)の薬理作用と骨粗鬆症の適応
      • 1 SERMおよびエストロゲンの化学構造
      • 2 SERMの作用プロファイル
      • 3 SERMとエストロゲンの薬理作用比較
      • 4 SERMとビスフォスフォネートの薬理作用比較
      • 5 臨床開発中のSERM
    • 3 カルシトニンの作用と骨粗鬆症の治療
      • 1 カルシトニンおよび受容体
      • 2 カルシトニンの作用
      • 3 カルシトニンによる骨粗鬆症の治療
    • 4 ビスフォスフォネートの作用と骨粗鬆症の治療
      • 1 ビスフォスフォネートの薬理学的特性と種類
      • 2 ビスフォスフォネートの薬物動態
      • 3 ビスフォスフォネートの作用機序
      • 4 副作用
      • 5 ビスフォスフォネートの骨粗鬆症治療効果
    • 5 活性型ビタミンDおよびその誘導体の作用と骨粗鬆症の治療
      • 1 骨粗鬆症と骨軟化症
      • 2 高齢者にみられる潜在的ビタミンD作用の不足
      • 3 皮膚におけるビタミンD産生とビタミンD不足
      • 4 肝臓での25位の水酸化反応
      • 5 腎臓での1α水酸化反応
      • 6 腸管での1,25(OH)2Dの反応性低下
      • 7 骨粗鬆症に対するカルシウム補充の効果
      • 8 骨粗鬆症に対するカルシウムとビタミンD補充の効果
      • 9 活性型ビタミンD治療の優位性とその効果
      • 10 活性型ビタミンDの活性の分離と新しい誘導体への期待
    • 6 ビタミンKの作用と骨粗鬆症の治療
      • 1 ビタミンKとは?
      • 2 ビタミンKと骨研究の歴史
      • 3 栄養素としてのビタミンKと骨
      • 4 骨グラ蛋白と骨代謝
      • 5 ビタミンKによる骨代謝への影響(in vivo)
      • 6 ビタミンKと骨代謝への影響(in vitro)-骨形成促進・骨吸収抑制効果-
      • 7 ビタミンK依存性蛋白の新しい展開
      • 8 投与時の注意点
    • 7 副甲状腺ホルモンの作用と骨粗鬆症への応用
      • 1 Ca・骨代謝調節におけるPTHの作用
      • 2 PTHの骨形成促進作用とその機序
      • 3 骨粗鬆症治療薬としてのPTHの臨床応用への展開
    • 8 骨形成促進薬剤の開発アプローチ:コレステロール生合成阻害薬スタチンの骨形成促進作用とその作用メカニズム
      • 1 理想的な骨粗鬆症治療薬とは?
      • 2 基本的方針
      • 3 in vivoにおける骨形成促進作用の検討
  • INDEX
    P.507閲覧
  • 奥付

参考文献

序論 骨格系の分子制御機構の解明とその骨代謝学への応用

P.12 掲載の参考文献

  • 1) Karp, S. J., Schipani, E., St-Jacques, B. et al.:Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and-independent pathways. Development 127:543-548, 2000
  • 4) Naski, M. C., Colvin, J. S., Coffin, J. d . et al:Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 125:4977-4988, 1998
  • 6) 金谷直子, 上田千里, 岩本容泰ほか:Cbfa 1 トランスジェニックマウスにおける軟骨細胞の成熟と内軟骨性骨化の促進. 日本骨代謝学会雑誌 18:6, 2000
  • 7) Takeda, S., Priemel, M., Amling, M. et al.:Ectopic bone formation in transgenic mice expressing Cbfa1 in chondrocytes. J. Bone Miner. Res. (Abstract) 15:S145(#1026), 2000
  • 10) Koyama, E., Iwamoto, M., Enomoto-Iwamoto, M. et al.:Regulation of indian hedgehog and Cbfa1 expression during chondrocyte maturation by retinoid signaling. J. Bone Miner. Res. (Abstract) 15:S145 (#1025), 2000
  • 14) Takeuchi, Y., Nakayama, K., Matsumoto, T.:Differentiation and cell surface expression of transforming growth factor-βreceptors are regulated by interaction with matrix collagen in murine osteoblastic cells. J. Biol. Chem. 271:3938-3944, 1996
  • 16) Takeuchi, Y., Suzawa, M., Kikuchi, T. et al.:Differentiation and transforming growth factor-β receptor down-regulation by collagen-α2β1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. J. Biol. Chem. 272:29309-29316, 1997
  • 18) 須澤美幸, 竹内靖博, 田村康博ほか:Ras/MAP キナーゼによる BMP/Smad1 を介する転写活性の促進作用. 日本骨代謝学会雑誌 16:24, 1998
  • 19) 中山耕之介, 田村康博, 須澤美幸ほか:チロシンキナーゼ受容体-Ras-ERK シグナルによる BMP依存性 Smad6 プロモータ活性の抑制. 日本骨代謝学会雑誌 18:30, 2000
  • 20) 井上大輔, 松本俊夫:骨吸収系における最近の知見. 日本臨床 56:1412-1418, 1998
  • 30) Kobayashi, K., Takahashi, N., Jimi, E. et al.:Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J. Exp. Med. 191:275-286, 2000
  • 33) Onoe, Y., Miyaura, C., Ohta, H. et al.:Expression of estrogen receptor β in rat bone. Endocrinology 138:4509-4512, 1997
  • 34) Smith, E. P., Boyd, J., Frank, G. R. et al.:Estrogen resistance caused by a mutation in the estrogen receptor gene in a man. N. Engl. J. Med. 331:1056-1061, 1994
  • 36) Windahl, S. H., Vidal, O., Andersson, G. et al.:Increased cortical bone mineral content but unchanged trabacular bone mineral density in female ERβ (-/-) mice. J. Clin. Invest. 104:895-901, 1999
  • 44) Jensen, O. B., Bjarnason, N. H., Rosequist, C. et al.:Serum CrossLaps for monitoring the response anti-resorptive therapy in the individual patient. J. Bone Miner. Res. (Abstract) 14:S162 (#1119), 1999
  • 45) Chapurlat, R. S., Garnero, P., Breart, G. et al.:Afternoon sampled serum CrossLaps predicts hip fracture in elderly women:The EPIDOS Study. J. Bone Miner. Res. 14:S162 (#1118), 1999
  • 47) Ettinger, B., Black, D. M., Mitlak, B. H. et al.:Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene:results from a 3-year randomized Clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 282:637-645, 1999
  • 48) Cummings, S. R., Eckert, S., Krueger, K. A. et al.:The effect of raloxifene on risk of breast cancer in postmenopausal women:results from the MORE randomized trial. Multiple Outcomes of Raloxifene Evaluation. JAMA 281:2819-2197, 1999
  • 50) Roe, E. B., Sancez, S. D., del Puerto, G. A. et al.:Parathyroid hormone 1-34 (hPTH1-34) and estrogen produce dramatic bone density increases in postmenopausal osteoporosis-results from a placebo-controlled randomized trial. J. Bone Miner. Res. (Abstract) 14:S137 (#1019), 1999

第1章 骨・軟骨細胞の形成・分化の分子機構

P.49 掲載の参考文献

  • 1) Poole, R.:関節軟骨と骨関節炎(藤沢隆一 訳). 蛋白質核酸酵素 40:56-67, 1995
  • 2) 小澤英浩:骨. 軟骨の構造. 最新内科学体系 73:3-12, 1995
  • 4) Macias, D., Ganan, Y., Sampath, T. K. et al.:Role of BMP-2 and OP-1 (BMP-7) in programmed cell death and skeletogenesis during chick limb development. Development 124(6):1109-1117, 199
  • 6) Zuniga, A., Haramis, A. P., McMahon, A. P. et al.:Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature 401 (6753):598-602, 1997
  • 8) Mo, R., Freer, A. M., Zinyk, D. L. et al.:Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and Development. Development 124(1):113-123, 1997
  • 10) Saamanen, A. M., Tammi, M., Jurvelin, J. et al.:Proteoglycan alterations following immobilization and remobilization in the articular cartilage of young canine knee (stifle) joint. J. Orthopaedic Res. 8(6):863-873, 199
  • 11) Kato, Y., Nomura, Y., Daikuhara, Y. et al.:Cartilage-derived factor (CDF) I. Stimulation of proteoglycan synthesis in rat and rabbit costal chondrocytes in culture. Exp. Cell Res. 130 (1):73-81, 1980
  • 19) Wuthier, R. E.:The role of phospholipids in biological calcification:distribution of phospholipase activity in calcifying epiphyseal cartilage. Clin. Orthop. Res. 90:191-200, 1973
  • 20) Wuthier, R. E.:Proposed mechanism of matrix vesicle formation and vesicle-mediated mineralization. (Ascenzi A., Bonucci E., Bernard B. eds.:matrix vesicles) Wichting Editore srl., Milano, 1981, p.103
  • 21) 須田立雄, 小澤英浩, 高橋栄明:骨の科学. 医歯薬出版, 1986
  • 23) Arana-Chavez, V. E., Soares, A. M. V., Katchburian, E.:Junctions between early developing osteoblasts of rat calvaria as revealed by freeze-fracture and ultrathin section electron microscopy. Arch. Histol. Cytol. 58(3):285-292, 1995
  • 27) Clover, J., Dodds, R. A., Gowen, M.:Integrin subunit expression by human osteoblasts and osteoclasts in situ and in culture. J. Cell Sci. 103:267-271, 1992
  • 36) Peters, K. G., Werner, S., Chen, C. et al.:Two FGF receptor genes are differentially expressed in epitheila and mesenchymal tissues during limb formation and organogenesis in the mouse. Develoment 114:233-243, 1992
  • 44) Ikegame, M., Ishibashi, O., Yoshizawa, T. et al.:Tensile stress induces bone morphogenetic protein 4 (BMP-4) in preosteoblastic and fibroblastic cells, which later differentiate into osteoblasts leading to osteogenesis in the mouse calvariae in organ culture. J. Bone Miner. Res. (in press)
  • 46) Mark, M. P., Butler, W. T. et al.:Developmental expression of 44-kDa phosphoprotein (osteopontin) and boneγ-carboxyglutamic acid (Gla)-containin protein (osteocalcin) in calcifying tissues of rat. Differentiation 37:123-136, 1988
  • 47) Bosky, A. L, Maresca, M., Ullrich, W. et al.:Osteopontin-hydroxyapatite interactions in vitro:Inhibition of hydroxyapatite formation and growth in a gelatin-gel. Bone Miner. 22:147-159, 1993
  • 54) Asou, Y., Amizuka, N., Yamashita, T. et al.:Osteopontin-deficient bone is defective in angiogenesis, osteoclast recruitment and ectopic resorption. J. Bone Miner. Res. 14:s133, 1999
  • 55) McKee, M. D., Farach-Carson, M. C., Butler, W. T. et al.:Ultrastructural immunolocalization of non-collagenous (osteopontin and osteocalcin) and plasma (albumin and α2HS-glycoprotein) proteins in rat bone. J. Bone Miner. Res. 8:485-496, 1993
  • 62) Belanger, L. F.:Osteocytic osteolysis. Calcif. Tissues Res. 4:1-12, 1969
  • 65) 真野 博, 前島朋子, 久米川正好:骨細胞(osteocyte)を介するシグナリング, 骨形成 ・吸収のシグナリングと骨疾患. 実験医学 14(10):103-108, 1996
  • 86) Okada, Y., Naka, K., Kawamura, K. et al.:Localization of matrix metalloproteinase 9 (92= kilodalton gelatinase/type IV collagenase=gelatinase B) in osteoclasts:Implications for bone resorption. Lab. Invest. 72:311-323, 1995
  • 88) Burger, E. H., van der Meer, J. W., Nijweide, P. J. et al.:Osteoclast fromation from mononuclear phagocytes:role of bone-forming cells. J. Cell Biol. 99:1901-1906, 1984
  • 95) Hara-Irie, F, Amizuka, N, Ozawa, H.:Immunohistochemical and ultrastructural localization of CGRP-positive nerve fibers at the distal trabecules facing the growth plate of rat femurs. Bone 18:29-39, 1996
  • 96) Tran, V. P., Vignery, A., Baron, R.:An electron-microscopic study of the bone-remodeling sequence in the rat. Cell Tissue Res. 225 (2):283-292, 1982
  • 97) Wu, C.-H., Hara, K., Ozawa, H.:Enhanced osteoinduction by intramuscular grafting of BMP-β-TCP-compound pellets into murine models. Arch. Histol. Cytol. 55:97-112, 1992
  • 98) Okuda, K., Nakajima, Y., Irie, K. et al.:Transforming growth factoer β-1 coated β-tricalcium phosphate pellets are osteoinductive in experimental bone defects of rat calvaria. Oral Dis. 1:92-97, 1995

P.65 掲載の参考文献

  • 1) 須田立雄:硬組織の形成と吸収のしくみ. 口腔生化学, 第二版. (早川太郎, 須田立雄 編)医歯薬出版, 1994, p.89-111
  • 5) 滝川正春, 鈴木不二男:軟骨細胞-細胞培養を中心に. 最新組織培養応用研究法, in vitro アッセイと有用物質生産. (山根績 編)ソフトサイエンス社, 1985, p.116-128
  • 10) Abou-Samra, A.-B., Juppner, H., Force, T. et al.:Expression cloning of common receptor for parathyriod hormone and parathyroid hormone-related peptide from rat osteoblast-like cells:A single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc. Natl. Acad. Sci. USA 89:2732-2736, 1992
  • 11) Urena, P., Kong, X.-F., Abou-Samra, A.-B. et al.:Parathyroid hormone (PTH)/PTH-related peptide receptor messenger ribonucleic acids are widely distributed in rat tissues. Endocrinol. 133:617-623, 1993
  • 14) Lanske, B., Karaplis, A., Luz, A. et al.:Characterization of mice heterozygous for the parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor gene knockout. Bone 16:86S, 1995
  • 15) Takahashi, O. K., Okamoto, T., Krane, S. M. et al.:Stimulation by glycocorticoids of the differentiated phenotype of chondrocytes and the proliferation of rabbit costal chondrocytes in culture. Bone 16:87S, 1995
  • 16) Takigawa, M., Enomoto, M., Shirai, E. et al.:differential effects of 1α, 25-dihydroxycholecalciferol and 24R, 25-dihydroxycholecalciferol on the proliferation and the differential phenotype of rabbit costal chondrocytes in culture. Endocrinol. 122:831-839, 1988
  • 18) 滝川正春:ヒト軟骨肉腫由来の軟骨培養細胞株(HCS-2/8). The Bone 12:37-43, 1990
  • 19) Enomoto, M., Takigawa, M.:Regulation of tumor-derived and immortalized chondrocytes. Biological Regulation of the Chondrocyte. (Adolphe, M. ed. ) CRC press, Boca Raton, Florida, 1992, p.321-338
  • 20) 高橋浩二郎, 滝川正春:軟骨と成長の制御. CLINICAL CALCIUM 5:29-32, 1995
  • 23) 野地澄晴, 吉岡秀文, 谷口茂彦:発生分化とレチノイン酸レセプター. 実験医学 10:2368-2369, 1992
  • 25) Trippel, S. T.:Role of IGF in the regulation of chondrocyte. Biological Regulation of the Chondrocyte. (Adolphe, M. ed.) CRC Press, Boca Raton, Florida, 1992, p.161-190
  • 26) Klangsbrun, M., Langer, R., Levenson, R. et al.:The stimulation of DNA and cell division in chondrocytes and 3T3 cells by a growth factor isolated from cartilage. Exp. Cell Res. 105:99-108, 1977
  • 27) Lobb, R., Sasse, J., Sullivan, R. et al.:Purification and characterization of heparine-binding endothelial cell growth factors. J. Biol. Chem. 261:1924-1928, 1986
  • 28) Kato, Y., Iwamoto, M.:Fibroblast growth factor is an inhibitor of chondrocyte terminal Differentiation. J. Biol. Chem. 265:5903-5909, 1990
  • 29) Iwamoto, M., Shimazu, A., Nakashima, K. et al.:Reduction of basic fibroblast growth factor receptor is coupled with terminal differentiation of chondrocytes. J. Biol. Chem. 266:461-467, 1991
  • 31) Noda, M., Camilliere, J. J.:In vivo stimulation of bone formation by transforming growth factor-β. Endocrinol. 24:2991-2994, 1989
  • 33) Chang, S. C., Hoang, B., Thomas, J. T. et al.:Cartilage-delived morphogenetic proteins (new members of the transforming growth factor-β superfamily predominantly expressed in long bones during human embryonic development) J. Biol. Chem. 269:28227-28234, 1994
  • 36) 中西徹, 滝川正春:結合組織成長因子CTGF/Hcs 24の生理機能-内軟骨性骨化における役割. 生化学 71:429-432, 1999
  • 42) Takigawa, M., Pan, H.-O., Enomoto, M. et al.:Aclonal human chondrosarcoma cell line produces an anti-angiogenic antitumor factor. Anticancer Res. 10:311-316, 1990
  • 45) St Jacques, B., Hammerschmidt, M., McMahon, A. P.:Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13:2072-2086, 1999
  • 46) Karp, S. J., Schipani, E., St Jacques, B. et al.:Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and-independent pathways. Development 127:543-548, 2000
  • 47) Kimata, K., Barrach, H. J., Brown, K. S. et al.:Absence of proteoglycan core protein in cartilage from the cmd/cmd (cartilage matrix deficiency) mouse. J. Biol. Chem. 256:6961-6968, 1981
  • 49) Tuckwell, D. S., Ayad, S., Grant, M. E. et al.:Conformation dependence of integrin-type II collagen binding, Inability of collagen peptides to support α2β1 binding, and mediation of adhesion to denatured collagen by a novel α5β1-fibronectine bridge. J. Cell Sci. 107:993-1005, 1994
  • 54) Lefebvre, V., de Crombrugghe, B.:Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biol. 16:529-540, 1998
  • 59) Takigawa, M., Tajima, K., Pan, H.-O. et al.:Establishment of a clonal human chondrosarcoma cell line with cartilage phenotypes. Cancer Res. 49:3996-4002, 1989
  • 60) 滝川正春:HCS-2/8, バイオテクノロジー素材としての培養細胞. 骨代謝(I). (久米川正好 編) 蛋白質核酸酵素 34:898-900, 1989
  • 61) 滝川正春:軟骨培養細胞株の樹立. 組織培養 15:165-169, 1989

P.77 掲載の参考文献

  • 1) Cooper, E. L., Klempau, A. E., Ramirez, J. A. et al.:Source of stem cells in evolution. In:development and differentiation of vertebrate lymphocytes. (Horton, J. D. ed. ) Elsevier/North-Holland, Amsterdam, 1980, p.3-14
  • 2) Kurokawa, K.:The kidney and calcium homeostasis. Kidney Int. 45:97-105, 1994
  • 31) Okada, S., Nakauchi, H., Nagayoshi, K. et al.:In vivo and in vitro stem cell function of c-kit-and Sca-1-positive murine hematopoietic cells. Blood 80:3044-3050, 1992
  • 35) Begg, S. K., Bertoncello, I.:The hematopoietic deficiencies in osteopetrotic (op/op) mice are not permanent, but progressively correct with age. Exp. Hematol. 21:493-495, 1993a
  • 36) Begg, S. K., Radley, J. M., Pollard, J. W. et al.:Delayed hematopoietic development in osteopetrotic (op/op) mice. J. Exp. Med. 177:237-242, 1993b

P.89 掲載の参考文献

  • 19) The American Society for Bone and Mineral Research President's Committee on Nomenclature.:Proposed standard nomenclature for new tumor necrosis factor family members involved in the regulation of bone resorption. J. Bone Miner. Res. 2000 (in press)
  • 27) 高橋直之, 宇田川信之, 須田立雄:破骨細胞の分化と機能を調節する新規の TNF 様因子(破骨細胞分化因子)の役割. 生化学 71:241-253, 1999
  • 28) 保田尚孝, 後藤雅昭:破骨細胞形成抑制因子 (Osteoclastogenesis inhibitory factor, OCIF) と破骨細胞分化因子 (Osteoclast differentiation factor, ODF):破骨細胞の分化 ・成熟を調節するメカニズム. 日本骨代謝学会雑誌 17:10-18, 1999
  • 29) Kobayashi, K., Takahashi, N., Jimi, E. et al.:Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J. Exp. Med. 191:275-286, 2000
  • 30) Azuma, Y., Kaji, K., Katogi, R. et al.:Tumor necrosis factor-α induces differentiation of and bone resorption by osteoclasts. J. Biol. Chem. 275:4858-4864, 2000
  • 31) 小林幹一郎, 宇田川信之, 高橋直之:骨吸収を調節する TNF 関連サイトカインの作用とシグナル伝達. 実験医学 18:348-353, 2000
  • 41) Jimi, E., Akiyama, S., Tsurukai, T. et al.:Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J. Immunol. 163:434-442, 1999
  • 50) 小竹茂, 宇田川信之, 須田立雄:関節病変における破骨細胞. リウマチ科 21:182-187, 1999
  • 51) Koide, M., Murase, Y., Yamato, K. et al.:Bone morphogenetic protein-2 enhances osteoclast formation mediated by interleukin-1α through upregulation of osteoclast differentiation factor and cyclooxygenase-2. Biochem. Biophys. Res. Commun. 259:97-102, 1999
  • 52) Sells Galvin, R. J., Gatlin, C. L., Horn, J. W. et al.:TGF-β enhances osteoclast differentiation in hematopoietic cell cultures stimulated with RANKL and M-CSF. Biochem. Biophys. Res. Commun. 265:233-239, 1999
  • 54) 伊藤雅波, 宇田川信之, 片桐岳信ほか:日本骨代謝学会雑誌18(抄):141, 2000
  • 56) Iotsova, V., Caamano, J., Loy, J. et al.:Osteopetrosis in mice lacking NF-B1 and NF-B2 Nat. Med. 3:1285-1289, 199
  • 57) Franzoso, G., Carlson, L., Xing, L. et al.:Required and nonessential functions of nuclear factor-B in bone cells. Genes Dev. 11:3482-3496, 1997

P.100 掲載の参考文献

  • 2) Gowen, M., Lazner, F., dodds, R. et al.:Cathepsin K knockout mice develop osteopetrosis due to adeficit in matrix degradation but not demineralization. J. Bone Miner. Res. 14:1654-1663, 1998
  • 11) Lowell, C.A., Niwa, M., Soriano, P. et al.:Deficiency of the Hck and Src tyrosine kinases results in extreme levels of extramedullary hematopoiesis. Blood 87:1780-1792, 1996

P.109 掲載の参考文献

  • 5) Weimin, B., Jian, M. D., Zhaoping, Z. et al.:Sox9 is required for cartilage formation. Nat. Genet. 22:85-89, 1999
  • 7) Bae, S. C., Yamaguchi-Iwai, Y., Ogawa, E. et al.:Isolation of PEBP2αB cDNA representing the mouse homolog of human acute myeloid leukemia gene, AML1. Oncogene 8:809-814, 1993
  • 8) Bae, S. C., Takahashi, E., Zhang, Y. W. et al.:Cloning, mapping and expression of PEBP2αC a third gene encoding the mammalian Runt domain. Gene 159:245-248, 1995
  • 9) Ogawa, E., Inuzaka, M., Maruyama, M. et al.:Molecular cloning and characterization of PEBP2β, the heterodimeric partner of a novel dorosophila runt-related DNA binding protein PEBP2α. Virology 194:314-331, 1993
  • 13) Sasaki, K, Yagi, H., Bronson, R. T. et al:Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor β. Proc. Natl. Acad. Sci. USA 93:12359-12363, 1996
  • 14) Wang, Q., Stacy, T., Miller, J. d. et al.:The CBFβsubunit is essential for CBFα2 (AML1) function in vivo. Cell 87:697-708, 1996
  • 16) Thirunavukkarasu, K., Mahajan, M., Mclarren, K. W. et al.:Two domains unique to osteoblastspecific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfβ. Mol. Cell. Biol. 18:4197-4208, 1998
  • 19) Stewart, M., Terry, A., Hu, M. et al.:Proviral insertions induce the expression of bone-specific isoforms of PEBP2αA (CBFA1):evidence for a new myc collaborating oncogene. Proc. Natl. Acad. Sci. USA 94:8646-8651, 1997
  • 21) Tsuji, K., Ito, Y., Noda, M. et al.:Expression of the PEBP2αA/AML3/CBFA1 gene is regulated by BMP4/7 heterodimer and its overexpression suppresses type I collagen and osteocalcin gene expression in osteoblastic and nonosteoblastic mesenchymal cells. Bone 22:87-92, 1998
  • 24) Selvamurugan, N., Pulimati, M. R., Tyson, D. R. et al.:Parathyroid hormone regulation of the rat collagenase-3 promoter by protein kinase A-dependent transactivation of core binding factorα1.J. Biol. Chem. 275:5037-5042, 2000
  • 33) Sato, M., Morii, E., Komori, T. et al.:Transcriptional regulation of osteopontin gene in vivo by PEBP2αA/CBFA1 and ETS1 in the skeletal tissues. Oncogene 17:1517-1525, 1998
  • 34) Sasaki-lwaoka, H., Maruyama, K., Endoh, H. et al.:A trans-acting enhancer modulates estrogen-mediated transcription of reporter genes in osteoblasts. J. Bone Miner. Res. 14:248-255, 1999
  • 37) Jimenez, M. G., Balbin, M., Lopez, J. M. et al.:Collagenase-3 is a target of Cbfa1, a transcription factor of the runt gene family involved in bone formation. Mol. Cell. Biol. 19:4431-4442, 1999

P.119 掲載の参考文献

  • 5) Geoffroy, V., Ducy, P., Karsenty, G.:APEBP2α/AML-1-related factor increases osteocalcin promoter activity through its binding to an osteoblast-specific cis-acting element. J. Biol. Chem. 270:30973-30979, 1995
  • 8) Hanai, J., Chen, L. F., Kanno, T.:Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline C α promoter. J. Biol. Chem. 274:31577-31582, 1999
  • 17) Chen, D., Ji, X., Marris, M. A. et al.:Differential roles for bone morphogenetic protein (BMP) receptor type I B and I A in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J. Cell Biol. 142:295-305, 1998
  • 19) Lecka-Czernik, B., Gubrij, I., Moerman, E. J.:Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARγ2. J. Cell. Biochem. 74:357-371, 1999
  • 23) St-Jacques, B., Hammerschmidt, M., McMahon, A. P.:Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13:2072-2086, 1999
  • 28) Nakamura, T., Aikawa, T., Iwamono-Enomoto, M. et al.:Induction of osteogenic differentiation by hedgehog proteins. Biochem. Biophys. Res. Commun. 237:465-469, 1997
  • 44) Globus, R. K., Patterson-Buckendahl, P., Gospodarowicz, D.:Regulation of bovine bone cell proliferation by fibroblast growth factor and transforming growth factor β. Endocrinology 123:98-105, 1988
  • 47) Hurley, M. M., Abreu, C, Harrison, J. R. et al.:Basic fibroblast growth factor inhibits type I collagen gene expression in osteoblastic MC3T3-E1 cells. J. Biol. Chem. 268:5588-5593, 1993
  • 56) Nakamura, K., Kurokawa, T., Kawaguchi, H. et al.:Stimulation of endosteal bone formation by local intraosseous application of basic fibroblast growth factor in rats. Rev. Rhum. Engl. Ed. 64:101-105, 1997

P.129 掲載の参考文献

  • 12) Withold, W.:Monitoring of bone turnover biological, preanalytical and technical criteria in the assessment of biochemical markers. Eur. J. Clin. Chem. Clin. Biochem. 34 (10):785-799, 1996
  • 15) Gilles, C., Bassuk, J. A., Pulyaeva, H. et al.:SPARC/osteonectin induces matrix metalloproteinase 2 activation in human breast cancer cell lines. Cancer Res. 58 (23):5529-5536, 1998
  • 16) lkemoto, M., Takita, M., Imamura, T. et al.:Increased sensitivity to the stimulant effects of morphine conferred by anti-adhesive glycoprotein SPARC in amygdala. Nat. Med. 6:910-915, 2000
  • 21) Norose, K., Clark, J. I., Syed, N. A. et al.:SPARC deficiency leads to early-onset cataractogenesis. Invest. Opthalmol. Vis. Sci. 39 (13):2674-2680, 1998
  • 23) Bradshaw, A. D., Francki, A., Motamed, K. et al.:Primary mesenchymal cells isolated from SPARC
  • 32) Luo, G., dugy, P., Mckee, M. d. et al.:Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386:78-81, 2000
  • 34) Wallin, R., Cain, D., Sane, d. C.:Matrix Gla protein synthesis and γ-carboxylation in the aortic vessel wall and proliferating vascular smooth muscle cells-a cell system which resembles the system in bone cells. Thromb. Haemost. 82 (6):1764-1767, 1999
  • 40) Kresse, H., Hausser, H., Schonherr, E. et al.:Biosynthesis and interactions of small chondroitin/ dermatan sulphate proteoglycans. Eur. J. Clin. Chem. Clin. Biochem. 32 (4):259-264, 1994
  • 45) Edwin, A. C., Todd, R. G., Eric, S. et al.:Genomic analysis of metastasis reveals an essential role for Rho C. Nature 406:532-535, 2000
  • 47) Bowe, M. A., Mendis, d. B., Fallon, J. R.:The small leucine-rich repeat proteoglycan biglycan binds to α-dystroglycan and is upregulated in dystrophic muscle. J. Cell Biol. 148(4):801-810, 2000
  • 50) Eddy, A. A.:Experimental insights into the tubulointerstitial disease accompanying primary glomerular lesions. J. Am. Soc. Nephrol. 5 (6):1273-1287, 1994
  • 51) Patarca, R., Saavedra, R. A., Cantor, H.:Molecular and cellular basis of genetic resistance to bacterial infection:the role of the early T-lymphocyte activation-1/osteopontin gene. Crit. Rev. Immunol. 13 (3-4):225-246, 1993
  • 52) Chambers, A. F., Tuck, A. B.:Ras-responsive genes and tumor metastasis. Crit. Rev. Oncogene. 4 (2):95-114, 1993
  • 58) Noda, M., Yoon, K., Prince, C. W. et al.:Transcriptional regulation of osteopontin production in rat osteosarcoma cells by type β transforming growth factor. J. Biol. Chem. 263:13916-13921, 1988
  • 63) Crawford, H. C., Matrisian, L. M., Liaw, L.:distinct roles of osteopontin in host defense activity and tumor survival during squamous cell carcinoma progression in vivo. Cancer Res. 58 (22):5206-5215, 1998

P.142 掲載の参考文献

  • 4) Harris, S., Bonewald, L. F., Harris, M. A. et al.:Effects of transforming growth factor β on bone nodule formation and expression of bone morphogenetic protein 2, Osteocalcin, osteopontin, alkaline phosphatase, and type I collagen mRNA in long-term cultures of fetal rat calvarial osteoblasts. J. Bone Miner. Res. 9:855-863, 1994
  • 9) Takeuchi, Y., Kodama, Y., Matsumoto, T.:Bone matrix decorin binds transforming growth factor-β and enhances its bioactivity. J. Biol. Chem. 269:32634-32638, 1994
  • 10) 久保木芳徳:骨と軟骨の有機成分-コラーゲン. BONE SCIENCE骨形成と骨吸収及びそれらの調節因子. (須田立雄 編)廣川書店, 1995, p. 59-75
  • 11) Rossert, J., Eberspaecher, H., de Crombrugghe, B.:Separate cis-acting dNA elements of the mouse pro-α1 (I) collagen promoter direct expression of reporter genes to different type I collagen-producing cells in transgenic mice. J. Cell Biol. 129:1421-1432, 1995
  • 12) Pavlin, D., Lichtler, A. C., Bedalov, A. et al.:differential utilization of regulatory domains within the α1 (d collagen promoter in osseous and fibroblastic cells. J. Cell Biol. 116:227-236, 1992
  • 13) Rossert, J. A., Chen, S. S., Eberspaecher, H. et al.:Identification of a minimal sequence of the mouse pro-α1 (d collagen promoter that confers high-level osteoblast expression in transgenic mice and that binds a protein selectively present in osteoblasts. Proc. Natl. Acad. Sci. USA 93:1027-1031, 1996
  • 14) Jimenez, S. A., Varga, J., Olsen, A. et al.:Functional analysis of human α1(I) procollagen gene promoter:differential activity in collagen-producing and-nonproducing cells and response to transforming growth factor b1. J. Biol. Chem. 269:12684-12691, 1994
  • 25) Schiro, J. A., Chan, B. M. C., Roswit, W. T. et al:Integrinα2β1 (VLA-2) mediates reorganization and contraction of collagen matrices by human cells. Cell 67:403-410, 1991
  • 26) Takeuchi, Y., Nakayama, K, Matsumoto, T.:differentiation and cell surface expression of transforming growth factor-β receptors are regulated by interaction with matrix collagen in murine osteoblastic cells. J. Biol. Chem. 271:3938-3944, 1996
  • 27) Riikonen, T., Koivisto, L., Vihinen, P. et al.:Transforming growth factor-β regulates collagen gel contraction by increasing α2 β1 integrin expression in osteogenic cells. J. Biol. Chem. 270:376-382, 1995
  • 29) Xiao, G., Wang, D., Benson, M. d. et al.:Role of the α2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor. J. Biol. Chem. 273:32988-32994, 1998
  • 31) Takeuchi, Y., Suzawa, M., Kikuchi, T. et al.:differentiation and transforming growth factor-β receptor down-regulation by collagen-α2βi integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. J. Biol. Chem. 272:29309-29316, 1997
  • 33) Kretzschmar, M., Doody, J., Massague, J.:Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1. Nature 389:618-622, 1997
  • 35) Wu, L. N. Y., Sauer, G. R., Wuthier, R. E.:Induction of mineral deposition by primary cultures of chicken growth plate chondrocytes in ascorbate-containing media:evidence of an association between matrix vesicles and collagen. J. Biol. Chem. 264:10917-10921, 1989
  • 36) Matsumoto, T., Kawanobe, Y., Morita, K. et al:Effect of 1,25-dihydroxyvitamin D3 on phospholipid metabolism in a clonal osteoblast-like rat osteogenic sarcoma cell line. J. Biol. Chem. 260:13704-13709, 1985
  • 39) Takeuchi, Y., Matsumoto, T., Ogata, E. et al.:1,25-dihydroxyvitamin D, inhibits synthesis and enhances degradation of proteoglycans in osteoblastic cells. J. Biol. Chem. 264:18407-18413, 1989
  • 40) 佐々木 哲:石灰化の機構. BONE SCIENCE骨形成と骨吸収及びそれらの調節因子. (須田立雄 編)廣川書店, 1995, p.149-159

P.154 掲載の参考文献

  • 7) Marotti, G.:The structure of bone tissues and the cellular control of their deposition. Ital. J. Anat. Embryol. 101:25-79, 1996
  • 8) Nefussi, J. R., Sautier, J. M., Forest, N.:Cell culture model and concept of bone surface. C. R. Seances Soc. Biol. Fil. 187:620-632, 1993
  • 15) Wong, S. Y., Evans, R. A., Needs, C. et al.:The pathogenesis of osteoarthritis of the hip. Evidence for primary osteocyte death. Clin. Orthop 214:305-312, 1987
  • 24) Wolff, J. L.:1986 The Law of Bone Remodeling (das Gesetz der Transformation der Knochen, 1892) . (Translated by Maquet, P., Furlong, R. ) . Springer-Verlag, Berlin
  • 31) Klein-Nulend, J., Semeins, C. M., Ajubi, N. E. et al.:Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts-correlation with prostaglandin upregulation. Biochem. Biophys. Res. Commun. 217:640-648, 1995
  • 34) Maejima-Ikeda, A., Aoki, M., Tsuritani, K. et al.:Chick osteocyte derived protein inhibits osteoclastic bone resorption. Biochem. J. 322:245-250, 1997
  • 39) 安藤譲二 編:シェアストレスと内皮細胞. メディカルレビュー社
  • 41) Klein-Nulend, J., Burger, E. H., Semeins, C. M. et al:Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J. Bone Miner. Res. 12:45-51, 1997
  • 46) Naemsch, L. N., Weidema, A. F., Sims, S. M. et al.:P2X (4) purinoceptors mediate an ATP-activated, non-selective cation current in rabbit osteoclasts. J. Cell. Sci. 112:4425-4435, 1999
  • 50) Sakai, K., Mohtai, M., Iwamoto, Y.:Fluid shear stress increases transforming growth factor β1 expression in human osteoblast-like cells:modulation by cation channel blockades. Calcif Tissue Int. 63:515-520, 1998
  • 56) 曽我部正博, 千 文可, 威 智ほか:伸展活性化Ca2+透過チャネル. カルシウムイオンとシグナル伝達. 蛋白質核酸酵素43:1628-1635, 1998
  • 59) Okabe, K., Okamoto, F., Kajiya, H. et al.:Multiple Ionic Channels Play the Role of Mechano-Receptor in Stretched Rat Osteocytes. J. Bone Miner. Res. 14:S480, 1999
  • 60) Mikuni-Takagaki, Y., Kawata, A., Kawase, T. et al.:Mechanosensitive Ion Channels Specific to Osteocytes. J. Bone. Miner. Res. 14:S206, 1999
  • 61) Laketic-Ljubojevic, I., Suva, L. J., Maathuis, F. J. et al.:Related Articles Functional characterization of N-methyl-D-aspartic acid-gated channels in bone cells. Bone 25:631-637, 1999
  • 67) Mikuni-Takagaki, Y.:Mechanical responses and signal transduction pathways in stretched osteocytes. J. Bone Miner. Metab. 17:57-60, 1999

第2章 骨代謝調節因子の分子作用機構

P.170 掲載の参考文献

  • 3) Tontonoz, P., Nagy, L., Alvarez, J. et al.:PPARγpromotes monocyte/macrophage differentiation and uptake of oxidized. LDL. Cell 93:241-252, 1998
  • 9) Bjorklund, S., Almouzni, G., Davidson, I. et al.:Global transcription regulators of eukaryotes. Cell 96:759-767, 1999
  • 11) Wurtz, M., Bourguet, W., Renaud, P. et al:Acanonical structure for the ligand-binding domain of nuclear receptors. Nature Structural Biology 3:87-94, 1996
  • 13) Kobayashi, Y., Kitamoto, T., Masuhiro, Y. et al.:p300 mediates functional synergims between AF-1 and AF-2 of estrogen receptor α and β by interacting directly with the N-terminal A/B domains. J. Boil. Chem. 275:15645-15651, 2000
  • 17) Onate, A., Tsai, Y., Tsai, J. et al.:Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 27e:1354-1357, 1995
  • 29) Endoh, H., Maruyama, K., Masuhiro, Y. et al.:Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function l of human estrogen receptor α. Mol. Cell. Biol. 19:5363-5372, 1999

P.182 掲載の参考文献

  • 3) Ogawa, S., Inoue, S., Watanabe, T. et al.:The complete primary structure of human estrogen receptor β (hERβ) and its heterodimerization with ERαin vivo and in vitro. Biochem. Biophys. Res. Commun. 243:122-126, 1998
  • 4) Hiroi, H., Inoue, S., Watanabe, T. et al.:Differential immunolocalization of estrogen receptor α and β in rat ovary and uterus. J. Mol. Endocrinol. 22 (1):37-44, 1999
  • 5) Watanabe, T., Inoue, S., Ogawa, S. et al.:Agonistic effect of tamoxifen is dependent on cell type, ERE-promoter context, and estrogen receptor subtype:functional difference between estrogen receptors α and β. Biochem. Biophys. Res. Commun. 236:140-145, 1997
  • 6) Onoe, Y., Miyaura, C., Ohta, H. et al:Expression of estrogen receptor β in rat bone. Endocrinology I38:4509-4512, 1997
  • 7) Arts, J., Kuiper, G. G., Janssen, J. M. et al:differential expression of estrogen receptors α and β mRNA during differentiation of human osteoblast SV-HFO cells. Endocrinology 138:5067-5070, 1997
  • 9) Windahl, S. H., Norgard, M., Kuiper, G. G. et al.:Cellular distribution of estrogen receptor β in neonatal rat bone. Bone 26 (2):117-121, 2000
  • 10) Vidal, O., Kindblom, L. G., Ohlsson, C.:Expression and localization of estrogen receptor-β in murine and human bone. J. Bone Miner. Res. 14 (6):923-929, 1999
  • 11) Paech, K., Webb, P., Kuiper, G. G. et al.:differential ligand activation of estrogen receptors ERα and ERβ at API sites. Science 277 (5331):1508-1510, 1997
  • 13) Smith, E. P., Boyd, J., Frank, G. R. et al.:Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 331:1056-1061, 1994
  • 16) Krege, J. H., Hodgin, J. B., Couse, J. F. et al.:Generation and reproductive phenotypes of mice lacking estrogen receptorβ. Proc. Natl. Acad. Sci. USA 95 (26):15677-15682, 1998
  • 17) Windahl, S. H., Vidal, O., Andersson, G. et al.:Increased cortical bone mineral content but unchanged trabecular bone mineral density in female ERβ (-/-) mice. J. Clin. .Invest. 104 (7):895-901, 1999
  • 18) Karas, R. H., Hodgin, J. B., Kwoun, M. et al.:Estrogen inhibits the vascular injury response in estrogen receptorβ-deficient female mice. Proc. Natl. Acad. Sci. USA 96 (26):15133-15136, 1999
  • 22) Couse, J. F., Hewitt, S. C., Bunch, D. O. et al.:Postnatal sex reversal of the ovaries in mice lacking estrogen receptors α and β. Science 286 (5448):2328-2331, 1999
  • 23) Ogawa, S., Inoue, S., Orimo, A. et al.:Cross-inhibition of both estrogen receptor α and β pathways by each dominant negative mutant. FEBS Lett. 423:129-132, 1998
  • 24) Ogawa, S., Fujita, M., Ishii, Y. et al.:Impaired estrogen sensitivity in bone by inhibiting both estrogen receptor α and β pathways. J. Biol. Chem. 275 (28):21372-21379, 2000
  • 26) Inoue, S., Kondo, S., Muramatsu, M.:Identification of target genes for a transcription factor by genomic binding site (GBS) cloning (1998) Transcription Factors-A Practical Approach, 2nd Edition (Latchman, d. S. ed. ) IRL press, 1998, p. 165-178
  • 30) Orimo, A., Inoue, S., Minowa, O. et al.:Underdeveloped uterus and reduced estrogen responsiveness in mice with disruption of the estrogen-responsive finger protein gene, which is a direct target of estrogen receptor α. Proc. Natl. Acad. Sci. USA 96 (21):12027-12032, 1999

P.195 掲載の参考文献

  • 15) Solomon, C., White, J. H., Kremer, R.:Mitogen-activated protein kinase inhibits 1,25-dihydroxyvitamin D3-dependent signal transduction by phosphorylating human retinoid X receptor α. J. Clin. Invest. 103:1729-1735, 1999
  • 20) Umesono, K., Murakami, K. K, Thompson, C. C. et al:direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors α 1165:1255-1266, 1991
  • 21) Schrader, M., Nayeri, S., Kahlen, J. P. et al.:Natural vitamin D3 response elements formed by inverted palindromes:polarity-directed ligand sensitivity of vitamin D3 receptor-retinoid X receptor heterodimer-mediated transactivation. Moll. Cell. Biol. 15:1154-1161, 1995
  • 29) Takeuchi, A., Reddy, G. S., Kobayashi, T. et al.:Nuclear factor of activated T cells (NFAT) as a molecular target for 1α, 25-dihydroxyvitamin D3-mediated effects. J. Immunol. 160:209-218, 1998
  • 40) Glass, C. K., Rosenfeld, M. G.:The coregulator exchange in transcriptional functions of nuclear receptors. Genes. . Dev. 14:121-141, 2000
  • 47) Cooney, A. J., Leng, X., Tsai, S. Y. et al:Multiple mechanisms of chicken ovalbumin upstream promoter transcription factor-dependent repression of transactivation by the vitamin D, thyroid hormone, and retinoic acid receptors. J. Biol. Chem. 268:4152-4160, 1993
  • 50) Yanagisawa, J., Yanagi, Y., Masuhiro, Y. et al.:Convergence of transforming growth factor-β and vitamin D signaling pathways on SMAD transcriptional coactivators. Science 283:1317-1321, 1999
  • 51) Okano, T., Tsugawa, N., Masuda, S. et al.:Regulatory activities of 2β-(3-hydroxypropoxy)-1α, 25-dihydroxyvitamin D3, a novel synthetic vitamin D3 derivative, on calcium metabolism. Biochem. Biophys. Res. Commun. 163:1444-1449, 1989
  • 52) Ono, Y., Kawase, A., Watanabe, H. et al.:Syntheses and preventive effects of analogues related to 1α, 25-dihydroxy-2β-(3-hydroxypropoxy) vitamin D3, (ED-71) on bone mineral loss in ovariectomized rats. Bioorg. Med. Chem. 6:2517-2523, 1998
  • 53) Song, L. N., Cheng, T.:Effects of 1,25-dihydroxyvitamin D3 analogue l, 24 (OH) 2-22-ene-24-cyclopropyl D3 on proliferation and differentiation of a human megakaryoblastic Leukemia cell line. Biochem. Pharmacol. 43:2292-2295, 1992
  • 59) Asou, H., Koike, M., Elstner, E. et al.:19-nor vitamin-d analogs:a new class of potent inhibitors of proliferation and inducers of differentiation of human myeloid leukemia cell lines. Blood 92:2441-2449, 1998
  • 60) Inoue, D., Matsumoto, T., Ogata, E. et al:22-Oxacalcitriol, a noncalcemia analogue of calcitriol, suppresses both cell proliferation and parathytoid hormone-related peptide gene expression in human T cell lymphotrophic virus, type I-infected T cells. J. Biol. Chem. 268:16730-16736, 1993
  • 65) Ozono, K., Saito, M., Miura, d. et al.:Analysis of the molecular mechanism for the antagonistic action of a novel 1α, 25-dihydroxyvitamin D(3) analogue toward vitamin D receptor function. J. Biol. Chem. 274:32376-32381, 1999
  • 66) Miura, D., Manabe, K., Ozono, K. et al.:Antagonistic action of novel 1α, 25-dihydroxyvitamin D3-26, 23-lactone analogs on differentiation of human leukemia cells (HL-60) induced by 1α, 25-dihydroxyvitamin D3. J. Biol. Chem. 274:16392-16399, 1999
  • 68) Takeyama, K., Kitanaka, S., Sato, T. et al.:25-Hydroxyvitamin D3 1α-hydroxylase and vitamin D synthesis. Science 277:1827-1830, 1997

P.212 掲載の参考文献

  • 1) Anderson, A., Davis, d. L., Dahlback, H. et al.:Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J. Biol. Chem. 264:8222-8229, 1989
  • 2) Masumoto, O., Ohyama, Y., Okuda, K.:Purification and characterization of vitamin D 25-hydroxylase from rat liver mitochondria. J. Biol. Chem. 263:14256-14260, 1988
  • 5) Ohyama, Y., Noshiro, M., Okuda, K.:Cloning and expression of cDNA encoding 25-hydroxyvitamin D3 24-hydroxylase. FEBS. Lett. 278:195-198, 1991
  • 6) Shinki, T., Shimada, H., Wakino, S. et al:Cloning and expression of rat 25-hydroxyvitamin D3-1α-hydroxylase cDNA. Proc. Natl. Acad. Sci. USA 94:12920-12925, 1997
  • 7) Fu, G. K., Lin, D., Zhang, M. Y. H. et al:Cloning of human 25-hydroxyvitamin D3-1α-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol. Endocrinol. 11 (13):1961-1970, 1997
  • 8) St-Arnaud, R., Messerian, S., Moir, J. M. et al.:The 25-hydroxyvitamin D3-1α-hydroxylase gene maps to the pseudovitamin D-deficiency rickets (PDDR) disease locus. J. Bone. Miner. Res. 12 (10):1552-1559, 1997
  • 9) Takeyama, K., Kitanaka, S., Sato, T. et al:25-Hydroxyvitamin D3-1α-hydroxylase and vitamin D synthesis. Science・277 (5333):1827-1830, 1997
  • 10) Monkawa, T., Yoshida, T., Wakino, S. et al.:Molecular cloning of cDNA and genomic DNA for human 25-hydroxyvitamin D3-1α-hydroxylase. Biochem. Biophys. Res. Commun. 239:527-533, 1997
  • 11) Yoshida, T., Yoshida, N., Nakamura, A. et al.:Cloning of porcine 25-hydroxyvitamin D3-1α-hydroxylase and its regulation by cAMP in LLC-PKI cells. J. Am. Soc. Nephrol. 10:963-970, 1999
  • 16) Horiuchi, N., Suda, T., Sasaki, S. et al.:Absence of regulatory effects of 1α, 25-dihydroxyvitamin D3 on 25-hydroxyvitamin D3 metabolism in rats constantly infused with parathyroid hormone. Biochem. Biophys. Res. Commun. 73 (4):869-875, 1976
  • 17) Horiuchi, N., Suda, T., Takahashi, H. et al.:In vivo evidence for the intermediary role of 3', 5:-cyclic AMP in parathyroid hormone-induced stimulation of 1α, 25-dihydroxyvitamin D3 synthesis in rats. Endocrinology 101:969-974, 1977
  • 19) Shinki, T., Ueno, Y., deLuca, H. F. et al.:Calcitonin is a major regulator for the expression of renal 25-hydroxyvitamin D3-1α-hydroxylase gene in normocalcemic rats. Proc. Natl. Acad. Sci. USA 96:8253-8258, 1999
  • 20) Brenza, H. L., Kimmel-Jehan, C., Jehan, F. et al:Parathyroid hormone activation of the 25-hydroxyvitamin D3-1α-hydroxylase gene promotor. Proc. Natl. Acad. Sci. USA 95:1387-1391, 1998
  • 21) Kong, X. F, Zhu, X. H., Pei, Y. L. et al.:Molecular cloning, characterization, and promoter analysis of the human 25-hydroxyvitamin D3-1α-hydroxylase gene. Proc. Natl. Acad. Sci. USA 96:6988-6993, 1999
  • 22) Murayama, A., Takeyama, K., Kitanaka, S. et al.:The promoter of the human 25-hydroxyvitamin D3-1α-hydroxylase gene confers positive and negative responsiveness to PTH, calcitonin, and 1α, 25(OH)2 D3. Biochem. Biophys. Res. Commun. 249 (1):11-16, 1998
  • 23) Murayama, A., Takeyama, K, Kitanaka, S. et al.:Positive and negative regulations of the renal 25-hydroxyvitamin D3-1α-hydroxylase gene by parathyroid hormone, calcitonin, and 1α, 25(OH)2 D3 in intact animals. Endocrinology 140 (5):2224-2231, 1999
  • 26) Kawashima, H., Torikai, S., Kurokawa, K.:Localization of 25-hydroxyvitamin D3-1α-hydroxylase and 24-hydroxylase along the rat nephron. Proc. Natl. Acad. Sci. USA 78:1199-1203, 1981
  • 28) Kawashima, H., Torikai, S., Kurokawa, K. et al.:Calcitonin selectively stimulates 25-hydroxyvitamin D3-1α-hydroxylase in proxmal straight tubule of rat kidney. Nature 291:327-329, 1981
  • 29) Yoshida, N., Yoshida, T., Nakamura, A. et al.:Calcitonin induces 25-hydroxyvitamin D31α-hydroxylase mRNA expression via protein kinase C pathway in LLC-PKI cells. J. Am. Soc. Nephrol. 10:2474-2479, 1999
  • 31) Bland, R., Walker, E. A., Hughes, S. V. et al.:Constitutive expression of 25-hydroxyvitamin D3-1α-hydroxylase in a transformed human proximal tubule cell line:evidence for direct regulation of vitamin D metabolism by calcium. Endocrinology 140 (5):2027-2034, 1999
  • 32) Akeno, N., Matsunuma, A., Maeda, T. et al.:Regulation of vitamin D-1α-hydroxylase and-24-hydroxylase expression by dexamethasone in mouse kidney. J. Endocrinology 164:339-348, 2000

P.227 掲載の参考文献

  • 4) Senior, P. V., Heath, D. A., Beck, F.:Expression of parathyroid hormone-related protein mRNA in the rat before birth:demonstration by hybridization histochemistry. J. Mol. Endocrinol. 6:281, 1990
  • 16) Maren, D., Palmer, G., Bonjour, J. P. et al.:Sequence and activity of parathyroid hormone/ parathyroid hormone-related protein receptor promoter region in human osteoblast-like cells. Gene 218:49-56, 1998
  • 19) Jansen, M.:Uber atypische Chondrodystrophie (Achondroplasia) und uber eine noch nicht beschriebene angeborene Wachstumsstarung des Knochensystems:Metaphysare dysostosis. Z. Orthop. Chir. 61:253-286, 1934
  • 26) Karaplis A, He, M. B., Nguyen, A. et al.:Blomstrand chondrodisplasia caused by a missense mutation in the human parathyroid hormone receptor-1. Endocrinology 139:5255, 1999

P.238 掲載の参考文献

  • 36) Marx, S. J., Spiegel, A. M., Brown, E. M. et al.:Divalent cation metabolism. Familial hypocalciuric hypercalcemia versus typical primary hyperparathyroidism. . Am. J. Med. 65:235-242, 1978
  • 42) Chou, Y. H., Pollak, M. R., Brandi, M. L. et al.:Mutations in the human Ca (2+)-sensing-receptor gene that cause familial hypocalciuric hypercalcemia. Am. J. Hum. Genet. 56:1075-1079, 1995
  • 44) Janicic, N., Pausova, Z., Cole, d. E. et al.:Insertion of an Alu sequence in the Ca (2+)-sensing receptor gene in familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Am. J. Hum. Genet. 56:880-886, 1995
  • 62) Lovlie, R., Eiken, H. G., Sorheim, J. I. et al:The Ca (2+)-sensing receptor gene (PCAR1) mutation T151M in isolated autosomal dominant hypoparathyroidism. Hum. Genet. 98:129-133, 1996
  • 68) Nielsen, P. K., Rasmussen, A. K., Butters, R. et al.:Inhibition of PTH secretion by interleukin-l β in bovine parathyroid glands in vitro is associated with an up-regulation of the calcium-sensing receptor mRNA. Biochem. Biophys. Res. Commun. 238:880-885, 1997
  • 69) Murphey, E. D., Chattopadhay, N., Traber, D. L. et al.:Increased parathyroid calcium-sensing receptor mRNA following burn injury in sheep. Bone 23:S458, 1998

P.252 掲載の参考文献

  • 1) Massague, J.:TGF-β signal transduction. Annu. Rev. Biochem. 67:753-791, 1998
  • 3) Heldin, C. H., Miyazono, K., ten dijke, P.:TGF-β signalling from cell membrane to nucleus through SMAd proteins. Nature 390:465-471, 1997
  • 4) ten dijke, P., Yamashita, H., Sampath, T. K. et al.:Identification of type I receptors for osteogenic protein-l and bone morphogenetic protein-4. J. Biol. Chem. 269:16985-16988, 1994
  • 5) ten dijke, P., Yamashita, H., Ichijo, H. et al:Characterization of type I receptors for transforming growth factor-β and activin. Science 264:101-104, 1994
  • 6) Ebisawa, T., Tada, K., Kitajima, L et al.:Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation. J. Cell. Sci. 112:3519, 1999
  • 8) Savage, C., Das, P., Finelli, A. L. et al.:Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor β pathway components. Proc. Natl. Acad. Sci. USA 93:790-794, 1996
  • 9) Raftery, L. A., Twombly, V., Wharton, K. et al.:Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 139:241-254, 1995
  • 10) Sekelsky, J. J., Newfeld, S. J., Raftery, L. A. et al.:Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139:1347-1358, 1995
  • 11) Zhou, S., Buckhaults, P., Zawel, L. et al.:Targeted deletion of Smad4 shows it is required for transforming growth factor β and activin in colorectal cancer cells. Proc. Natl. Acad. Sci. USA 95:2412-2416, 1998
  • 13) Imamura, T., Takase, M., Nishihara, A. et al.:Smad6 inhibits signalling by the TGF-β superfamily. Nature 389:622-626, 1997
  • 14) Nakao, A., Afrakhte, M., Moren, A. et al.:Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature 389:631-635, 1997
  • 16) Ulloa, L, Doody, J., Massague, J.:Inhibition of transforming growth factor-β/SMAd signalling by the interferon-γ/STAT pathway. Nature 397:710-713, 1999
  • 17) Afrakhte, M., Moren, A., Jossan, S. et al:Induction of inhibitory Smad6 and Smad7 mRNA by TGF-β family members. Biochem. Biophys. .Res. Commun. 249:505-511, 1998
  • 18) Bitzer, M., von Gersdorff, G., Liang, d. et al:A mechanism of suppression of TGF-β/SMAd signaling by NF-κB/RelA. Genes. Dev. 14:187-197, 2000
  • 20) Lo, R. S., Chen, Y. G., Shi, Y. et al.:The L3 loop:a structual motif determining specific interactions between SMAd proteins and TGF-β receptors. EMBO J. 17:996-1005, 1998
  • 21) Chen, Y. G., Massague, J.:Smad1 recognition and activation by the ALKI group of transforming growth factor-β family receptors. J. Biol. Chem. 274:3672-3677, 1999
  • 23) Shi, Y., Wang, Y. F., Jayaraman, L. et al.:Crystal structure of a Smad MH1 domain bound to DNA binding in TGF-β signaling. Cell 94:585-594, 1998
  • 25) Kretzschmar, M., Doody, J., Massague, J.:Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1. Nature 389:618-622, 1997
  • 26) Kretzschmar, M., Doody, J., Timokhina, I. et al.:A mechanism of repression of TGFβ/Smad signaling by oncogenic Ras. Genes. Dev. 13:804-816, 1999
  • 29) Zhang, Y., Feng, X. H., derynck, R.:Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription. Nature 394:909-913, 1998
  • 31) Sano, Y., Harada, J., Tashiro, S. et al.:ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-β signaling. J. Biol. Chem. 274:8949-8957, 1999
  • 34) Hanai, J., Chen, L. F., Kanno, T. et al.:Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline C α promoter. J. Biol. Chem. 274:31577-31582, 1999
  • 36) Dennler, S., Itoh, S., Vivien, d. et al.:Direct binding of Smad3 and Smad4 to critical TGFβ-inducible elements in the promoter of human plasminogen activator inhibitor-typel gene. EMBO J. 17:3091-3100, 1998
  • 37) Jonk, L. J., Itoh, S., Heldin, C. H. et al.:Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-β, activin, and bone morphogenetic protein-inducible enhancer. J. Biol. Chem. 273:21145-21152, 1998
  • 38) Pardali, E., Xie, X. Q., Tsapogas, P. et al.:Smad and AML proteins synergistically confer transforming growth factor β1 responsiveness to human germ-line IgA genes. J. Biol. Chem. 275:3552-3560, 2000
  • 43) Pelton, R. W., Saxena, B., Jones, M. et al.:Immunohistochemical localization of TGFβ1, TGFβ2, and TGFβ3 in the mouse embryo:expression patterns suggest multiple roles during embryonic development. J. Cell. Biol. 115:1091-1105, 1991
  • 44) Oursler, M. J.:Osteoclast synthesis and secretion and activation of latent transforming growth factor β. J. Bone Miner. Res. 9:443-452, 1994
  • 45) Erlebacher, A., Derynck, R.:Increased expression of TGF-β2 in osteoblasts results in an osteoporosis-like phenotype. J. Cell. Biol. 132:195-210, 1996
  • 46) Erlebacher, A., Filvaroff, E. H., Ye, J. Q. et al.:Osteoblastic responses to TGF-β during bone remodeling. Mol. Biol. Cell. 9:1903-1918, 1998
  • 47) Filvaroff, E., Erlebacher, A., Ye, J. et al.:Inhibition of TGF-β receptor signaling in osteoblasts leads to decreased bone remodeling and increased trabecular bone mass. Development 126:4267-4279, 1999
  • 49) Wieser, R., Wrana, J. L., Massague, J.:GS domain mutations that constitutively activate T β R-I, the downstream signaling component in the TGF-β receptor complex. EMBO J. 14:2199-2208, 1995
  • 51) Atfi, A., Djelloul, S., Chastre, E. et al.:Evidence for a role of Rho-like GTPases and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in transforming growth factor β-mediated signaling. J. Biol. Chem. 272:1429-1432, 1997
  • 53) Hocevar, B. A., Brown, T. L, Howe, P. H. et al.:TGF-β induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J. 18:1345-1356, 1999

P.260 掲載の参考文献

  • 1) Thomas, D. M., Hards, D. K., Rogers, S. D. et al.:Insulin and bone, Clinical and scientific view. Endocrinol. Metab. Clin. North Am. 4:5-17, 1997
  • 6) Buysschaert, M., Cauwe, F., Jamart, J. et al.:Proximal femur density in type I and type II diabetic patients. DiabetMetab. Rev. 18:32-37, 1992

P.272 掲載の参考文献

  • 1) 上野直人, 野地澄晴:ダイナミックな器官形成, ニワトリの翼. 新形づくりの分子メカニズム. 東京, 羊土社, 1999, p.96-134
  • 2) 竹内 純, 小柴和子, 小椋利彦:前後肢の違いを決めるTbx遺伝子とidentityの獲得. 実験医学18(9):1183-1193, 2000
  • 3) Rodriguez, E. C., Tsukui, T., Yonei, S. et al.:The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity [see comments]. Nature 398:814-818, 1999
  • 5) Ohuchi, II., Nakagawa, T., Yamamoto, A. et al.:The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124:2235-2244, 1997
  • 6) Xu, X., Weinstein, M., Li, C. et al.:Fibroblast growth factor receptor 2(FGFR2)-mediated reciprocal regulation loop between FGF8 and FGFIO is essential for limb induction. Development 125:753-765, 1998
  • 13) Francis, P. H., Richardson, M. K., Brickell, P. M. et al.:Bone morphogenetic proteins and a signalling pathway that controls patterning in the developing chick limb. Development 120:209-218, 1994
  • 15) Kawakami, Y., Ishikawa, T., Shimabara, M. et al.:BMP signaling during bone pattern determination in the developing limb. Development 122:3557-3566, 1996
  • 18) Rodriguez, E. C., Schwabe, J. W., De, L. P. J. et al.:Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb[see comments][published erratum appears in Nature 1997 Aug 28;388 (6645):906]. . Nature 386:360-366, 1997
  • 19) Logan, C., Hornbruch, A.,:Campbell, I. et al.:The role of Engrailed in establishing the dorsoventral axis of the chick limb. Development 124:2317-2324, 1997
  • 25) Ciang, C., Litingtung, Y., Lee, E. et al.:Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407-413, 1996
  • 26) St-Jacques, B., Hammerschmidt, M., McMahon, A. P.:Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes. Dev. 13:2072-2086, 1999
  • 28) lwasaki, M., Le, A. X., Helms, J. A.:Expression of indian hedgehog, bone morphogenetic protein 6 and gli during skeletal morphogenesis. Mech. Dev. 69:197-202, 1997
  • 31) Enomoto-Iwamoto, M., Nakamura, T., Aikawa, T. et al.:Hedgehog proteins stimulate chondrogenic cell differentiation and cartilage formation. J. Bone Miner. Res. 2000 (in press)
  • 33) Scott, N. S., Choung, C.-M.:dual action of sonic hedgehog on chondrocyte hypertrophy:retrovirus mediated ectopic sonic hedgehog expression in limb bud micromass culture induces novel cartilage nodules that are positive for alkaline phosphatase and type X collagen. J. Cell Sci. 110:2691-2701, 1997
  • 38) Minowada, G., Jarvis, L. A., Chi, C. L. et al.:Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126:4465-4475, 1999
  • 41) Enomoto-Iwamoto, M., Iwamoto, M., Kazuhisa, N. et al.:Involvement of α5β1 integrin in matrix interactions and proliferation of chondrocytes. J. Bone Miner. Res. 12:1124-1132, 1997
  • 43) Yokouchi, Y., Sakiyama, J., Kameda, T. et al.:BMP-2/-4 mediate programmed cell death in chicken limb buds. Development 122:3725-3734, 1996
  • 44) Yi, S. E., daluiski, A., Pederson, R. et al.:The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127:621-630, 2000
  • 45) Enomoto-Iwamoto, M., Iwamoto, M., Mukudai, Y. et al.:Bone morphogenetic protein signaling is required for maintenance of differentiated phenotype, control of proliferation, and hypertrophy in chondrocytes. J. Cell Biol. 140:409-418, 1998
  • 54) Hoang, B. H., Thomas, J. T., Abdul, K. F. et al.:Expression pattern of two Frizzled-related genes, Frzb-1 and Sfrp-1, during mouse embryogenesis suggests a role for modulating action of Wnt family members. Dev. Dyn. 212:364-372, 1998
  • 57) Wada, N., Kawakami, Y., Ladher, R. et al.:Involvement of Frzb-1 in mesenchymal condensation and cartilage differentiation in the chick limb bud. Int. J. Dev. Biol. 43:495-500, 1999
  • 61) Nishita, M., Hashimoto, M. K., Ogata, S. et al.:Interaction between Wnt and TGF-β signallihg pathways during formation of Spemann's organizer. Nature 403:781-785, 2000

P.286 掲載の参考文献

  • 5) Jimi, E., Nakamura, I., Ikebe, T. et al.:Activation of NF-κB is involved in the survival of osteoclasts promoted by interleukin-1. J. Biol. Chem. 273:8799-8805, 1998
  • 6) 稲田全規 ・宮浦千里:炎症性骨吸収とマトリックスメタロプロテアーゼ. CLINICAL CALCIUM 8:300-305, 1998
  • 10) Onoe, Y., Miyaura, C., Kaminakayashiki, T. et al.:IL-13 and IL-4 inhibit bone resorption by suppressing cyclooxygenase-2-dependent prostaglandin synthesis in osteoblasts. J. Immunol. 156:758-764, 1996
  • 11) 宮浦千里:ホルモンおよびサイトカインによる骨吸収の調節. 生化学70:516-530, 1998
  • 13) 小林拓也, 牛首文隆, 成宮 周:受容体ノックアウトマウスを用いた新しい生理機能の解析. 現代医療31:171-184, 1999
  • 20) Onoe, Y., Miyaura, C., Ohta, H. et al.:Expression of estrogen receptor β in rat bone. Endocrinology 138:4509-4512, 1997
  • 22) Kanematsu, M., Sato, T., Takai, H. et al.:Prostaglandin E2 induces expression of receptor activator of nuclear factor-πB ligand/osteoprotegrin ligand on pre-B cells:Implications for accelerated osteoclastogenesis in estrgoen deficiency. J. Bone Miner. Res. 15:1321-1329, 2000
  • 21 Asami, T., Inada, M., Mizunuma, H. et al.:Expression of osteoclast differentiation factor (ODF/RANKL/OPG1) in trab β cular bone and bone marrow B-lymphocytes in OVX mice. J. Bone Miner. Res. 14:S152, 1999

第3章 骨粗鬆症の病態と診断の分子医学

P.296 掲載の参考文献

  • 2) Gallagher, J. C.:Estrogen:prevention and treatment of osteoporosis, in Osteoporosis. (Marcus, R., Feldman, D., Kelsery, J. eds. ) Academic Press, San diego, 1996, p.1191-1208
  • 5) Bilezikian, J. P., Morishima, A., Bell, J. et al.:Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N Engl. J. Med. 339:599-603, 1998
  • 6) Carani, C., Qin, K, Simoni, M. et al.:Effect of testosterone and estradiol in a man with aromatase deficiency. N. Engl. J. Med. 337:91-95, 1998
  • 12) Smith, E. P., Bpyd, J., Frank, G. R. et al.:Estrogen resistance caused by a mutation in the estrogen receptor gene in a man. N. Engl. J. Med. 331:1056-1061, 1994
  • 14) Windahl, S. H., Vidal, O., Andersson, G. et al.:Increased cortical bone mineral content but unchanged trabecular bone mineral density in female ERβ-/-mice. J. Clin. Invest. 104:895-901, 1999
  • 28) Girasole, G., Jilka, R. L., Passeri, G. et al.:17β-estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro:apotential mechanism for the antiosteoporotic effect of estrogens. J. Clin. Invest. 89:883-891, 1992
  • 30) Poli, V., Balena, R., Fattori, E. et al.:Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 13:1189-1196, 1994
  • 50) Sato, T., Ikeda, K., Watanabe, K.:Generation of bone-resorbing osteoclasts from B220-positive cells:its role in accelerated osteoclastogenesis in estrogen deficiency. J. Bone Miner. Res. (in press)
  • 52) Hughes, D. E., Dai, A., Tiffee, J. C. et al.:Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-β. Nat. Med. 2:1132-1136, 1996
  • 57) 浅見哲司ほか:エストロゲン欠乏による骨髄リンパ球造血の亢進と破骨細胞分化誘導因子(ODF)の発現増大の相関. 日本骨代謝学会雑誌17:58, 1999
  • 62) Bolscher, M. T., Netelenbos, J. C., Barto, R. et al.:Estrogen regulation of intestinal calcium absorption in the intact and ovariectomized adult rat. J. Bone Miner. Res. 14:1197-1202, 1999
  • 64) Khosla, S., Melton, L. J. III., Atkinson, E. J. et al.:Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women:akey role for bioavailable estrogen. J. Clin. Endocrinol. Metab. 83:2266-2274, 1998

P.310 掲載の参考文献

  • 8) D'Ippolito, G., Schiller, P. C., Ricordi, C. et al.:Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J. Bone Miner. Res. 14:1115-1122, 1999
  • 17) Poli, V., Balena, R., Fattori, E. et al.:Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 13:1189-1196, 1994
  • 23) O'Brien, C. A., Gubrij, I., Lin, S. C. et al.:STAT3 Activation in Stromal/Osteoblastic Cells Is Required for Induction of the Receptor Activator of NF-κB Ligand and Stimulation of Osteoclastogenesis by gp130-utilizing Cytokines or Interleukin-l but Not 1,25-dihydroxyvitamin D3 or Parathyroid Hormone. J. Biol. Chem. 274:19301-19308, 1999
  • 24) Azuma, Y., Kaji, K., Katogi, R. et al.:Tumor necrosis factor-α induces differentiation of and bone resorption by osteoclasts. J. Biol. Chem. 275:4858-4864, 2000
  • 25) Kobayashi, K., Takahashi, N., Jimi, E. et al.:Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J. Exp. Med. 191:275-286, 2000
  • 27) Aerssens, J., Boonen, S., Joly, J. et al.:Variations in trabecular bone composition with anatomical site and age:potential implications for bone quality assessment. J. Endocrinol. 155:411-421, 1997
  • 28) Nicolas, V., Prewett, A., Bettica, P. et al.:Age-related decreases in insulin-like growth factor-I and transforming growth factor-β in femoral cortical bone from both men and women:implications for bone loss with aging. J. Clin. Endocrinol. Metab. 78:1011-1016, 1994
  • 36) Marie, P.:Growth factors and bone formation in osteoporosis:roles for IGF-Iand TGF-β. Rev. Rhum. Engl. Ed. 64:44-53, 1997
  • 37) Lamberts, S. W., van den Beld, A. W., van der Lely, A. J.:The endocrinology of aging. Science (Wash. DC) 278:419-424, 1997
  • 39) Stephan, J. J., Lachman, M., Zverina, J. et al:Castrated men exhibit bone loss:Effect of calcitonin treatment on biochemical indices of bone remodeling. J. Clin. Endocrinol. Metab. 69:523-527, 1989
  • 40) Smith, E. P., Boyd, J., Frank, G. R. et al.:Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 331:1056-1061, 1994
  • 41) MacGimvray, M. H., Morishima, A., Conte, F. et al.:Pediatric endocrinology update:an overview. The essential roles of estrogens in pubertal growth, epiphyseal fusion andbone turnover:lessons from mutations in the genes for aromatase and the estrogen receptor. Horm. Res. 1:2-8, 1998
  • 42) Bilezikian, J. B., Morishima, A., Bell, J. et al.:Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N. Engl. J. Med. 339:599-603, 1998
  • 45) Cummings, S. R., Browner, W. S., Bauer, d. et al:Endogenous hormones and the risk of the hip and vertebral fractures among older women. N. Engl. J. Med. 339:733-738, 1998
  • 48) Matsushita, M., Tsuboyama, T., Kasai, R. et al:Age-related changes in bone mass in the senescence-accelerated mouse (SAM) . SAM-R/3 and SAM-P/6 as new murine models for senile osteoporosis. Am. J. Pathol. 125:276-283, 1986
  • 52) Tohjima, E., Inoue, D., Yamamoto, N. et al.:Analysis of regulatory elements of mouse interleukin-11 gene transcription:insight into the mechanism of impairment of bone formation in senescence-acceleratd mice (SAM) . J. Bone Miner. Res. 14 (suppl.1):S152, 1999
  • 54) Kuro-o, M., Matsumura, Y., Aizawa, H. et al:Mutation of the mouse klotho gene leads to a syndrome resembling ageing[see comments]. Science (Wash. DC) 278:45-51, 1997

P.323 掲載の参考文献

  • 1) 名和田 新, 高柳淳一, 柳瀬敏彦ほか:グルココルチコイド療法の適応症と治療計画. Mol. Med. 30:592-600, 1993
  • 2) 名和田 新:ステロイド性骨粗鬆症. 日本内科学会雑誌89:2116-2121, 2000
  • 3) 名和田 新, 高柳涼一, 柳瀬敏彦ほか:副腎皮質ステロイドホルモン過剰による骨変化の分子機構. 分子骨代謝学と骨粗鬆症. (松本俊夫 編)メディカルレビュー社, 東京, 1996, p. 261-269
  • 4) 名和田 新, 生山祥一郎, 後藤公宣ほか:内科医からみた慢性関節リウマチにおけるステロイドの功罪. 整形外科, 慢性関節リウマチ34:30-34, 1998
  • 7) American College of Rheumatology Task Force on Osteoporosis Guideline:Recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Rheum. 39:1791-1801, 1996
  • 9) 名和田 新, 田中誠一:副腎アンドロゲンの骨粗鬆症における役割. 医学のあゆみ165:538-541, 1993
  • 11) Smith, E. P., Boyd, J., Frank, G. R. et al.:Estrogen resistance caused by a mutation in the estrogen-receptor gene in man. N. Engl. J. Med. 331:1056-1061, 1994

P.334 掲載の参考文献

  • 4) Pezzano, M., Li, Y., Phlip, d. et al.:Thymic nurse cells of early Cd4+Cd8+thymocytes from apoptosis. Cell. Mol. Biol. 41:1099-1111, 1995
  • 5) Pezzano, M., Phlip, D., Stephenson, S. et al.:Positive selection by thymic nurse cells requires IL-1β and is associated with an increased Bcl-2 expression. Cell. Immunol. 169:174-184, 1996
  • 6) Oliveira-dos-Santos, A. J., Penninger, J. M., Rieker-Geley, T. et al.:Thymic heterotypic cellular complexes in gene-targeted mice with defined blocks in T cell development and adhesion molecule expression. Eur. J. Immunol. 28:2882-2892, 1998
  • 8) Nakagawa, S., Hata, M., Seki, M. et al.:Interaction of cutaneous stromal cells and γ/δ T cell receptor (TcR)-positive cells. I. Vγ-γ/δTcR T cells migrating from organ-cultured murine skin proliferate by co-culture with cutaneous stromal cells in the presence of interleukin-2. Eur. J. Immunol 23:1705-1710, 1993
  • 9) Iwagami, S., Furue, S., Toyosaki, T. et al:Establishment and characterization of nurse cell-like clones from human skin. Nurse cell-like clones can stimulate autologous mixed lymphocyte reaction. J. Immunol. 153:2927-2938, 1994
  • 13) Tanabe, M, Ochi, T., Tomita, T. et al.:Remarkable elevation of interleukin 6 and interleukin 8 levels in the bone marrow serum of patients with rheumatoid arthritis. J. Rheumatol. 21:830-835, 1994
  • 14) 越智隆弘, 鈴木隆二, 前田(豊崎)朋子:慢性関節リウマチと骨髄病変. 治療学33:822-824, 1999
  • 15) Edwards, J. C. W.:The synovium, in Rheumatology. (Klippel, J. H., dieppe, P. A. eds. ) Mosby, London, Philadelphia, St. Louis, Sydney, Tokyo, 1998, section 5, 6-l
  • 17) 鈴木隆二, 冨田哲也, 越智隆弘ほか:リウマチ病変とナース細胞. リウマチ病セミナーVIII. (七川歡次 監)永井書店, 大阪, 1997, p.155-163
  • 18) 高野裕史, 冨田哲也, 前田(豊崎)朋子ほか:RA間質(ナース)細胞による末梢血単球の前破骨細胞への変化. リウマチ40:360, 2000
  • 21) 冨田哲也, 金子元春, 高野裕史ほか:慢性関節リウマチ間質(ナース)細胞による軟骨破壊. リウマチ40:364, 2000

P.347 掲載の参考文献

  • 1) Krolner, B., Toft, B., PorsNielsen, S. et al.:Physical exercise as prophylaxis against involutional vertebral bone loss:acontrolled trial. Clin. Sci. 64:541-546, 1983
  • 22) Klein-Nulend, J., van der Plas, A., Semeins, C. M. et al.:Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 9:441-445, 1995
  • 25) Mikuni-Takagakl, Y.:Mechanical responses and signal transduction pathways in stretched osteocytes. J. Bone Miner. Metab. 17:57-60, 1999

P.364 掲載の参考文献

  • 4) Ruegesegger, P., Koller, B., Muller, R. et al:A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int. 58:24-29, 1996
  • 13) Muller, R., Hildebrand, T., Ruegesegger, P. et al.:Structural bone properties from different sites of the human skeleton assessed by micro-computed tomography. Osteoporosis Int, 7:271, 1997
  • 15) 伊東昌子ほか:ヒト腸骨三次元骨梁構造の加齢変化. 1999年 代謝性骨疾患研究会にて報告.
  • 19) lto, M.:Symposium of The Bone Architecture and the Competence of Bone. Montry, USA May7, 2000
  • 22) Peyrin, F., Salome, M., Cloetens, P. et al.:Micro-CT examinations of trabecular bone samples at different resolutions:14, 7 and 2 micron level. Technol. Health Care 6:391-401, 1998

P.376 掲載の参考文献

  • 3) Hosoda, K., Eguchi, H., Nakamoto, T. et al.:Sandwich immunoassay for intact human osteocalcin. Clin. Chem. 38:2223-2338, 1992
  • 9) Knoll, B. J., Rothblum, K. N., Longley, M..:Nucleotide sequence of human placental alkaline phosphatase gene. Evolution of the 5' flanking region by deletion/substitution. J. Biol. Chem. 263:12020-12027, 1988
  • 15) Stepan, J. J., Tesarova, A., Harvanek, T. et al.:Age and sex dependency of the biochemical indices of bone remodelling. Clin. Chim. Acta 151:273-283, 1985
  • 18) Melkko, J., Niemi, S., Risteli, L. et al.:Radioimmunoassay of the carboxyterminal propeptide of human type I procollagen. Clin. Chem. 36:1328-1332, 1990

P.388 掲載の参考文献

  • 3) Stepan, J. J., Pospichal, J., Presl, J. et al.:Bone loss and biochemical indices of bone remodeling in surgically induced postmenopausal women. Bone 8:279-284, 1987
  • 7) Smedsrod, B., Melkko, J., Risteli, J. et al.:Circulating C-terminal propeptide of type I procollagen is cleared mainly via the mannose receptor in liver endothelial cells. Biochem. J. 271:345-350, 1990
  • 12) Robins, S. P., Duncan, A., Riggs, B. L.:Direct measurement of free hydroxypyridinium crosslinks of collagen in urine as a new marker of bone resorption in osteoporosis. Osteoporosis. (Christiansen, C., Overgaad, K. eds.) Osteoporosis Aps, Copenhagen, 1990, p.465-468
  • 20) Akesson, K., Vergnaud, P., Gineyts, E. et al.:Impairment of bone turnover in elderly women with hip fracture. Calcif. Tissue Int. 53:162-169, 1993
  • 23) Prestwood, K. M., Pilbeam, C. C., Burleson, J. A. et al.:The short term effects of conjugated estrogen on bone turnover in older women. J. Clin. Endocrinol. Metab. 79:366-371, 1994
  • 29) Mallinak, N. J. S., Chemens, J. D.:Cross-linked N-telopeptides of bone collagen:A marker of bone resorption. J. Clin. Ligand Assay 21:111-117, 1998
  • 33) Chesnut, III. C. H., Bell, N. H., Chark, G. S. et al.:Hormone replacement therapy in postmenopausal women:Urinary N-telopeptide of type I collagen monitors therapeutic effect and predicts response of bone mineral density. Am. J. Med. 102:29-37, 1997
  • 36) Bonde, M., Qvist, P., Fledelius, C. et al.:Immunoassay for quantifying type I collagen degradation products in urine evaluated. Clin. Chem. 40:2022-2025, 1994
  • 41) Fledelius, C., Johnsen, A. H., Cloos, P. A. C. et al.:Characterization of urinary degradation products derived from type I collagen:Identification of aβ-isomerized Asp-Gly sequence within the C-terminal telopeptide (α1) region. J. Biol. Chem. 272:9755-9763, 1997
  • 43) Hoshino, H., Takahashi, M., Kushida, K. et al.:The relationships between the degree of β-isomerization of type I collagen degradation products in the urine and aging, menopause and osteoporosis with fractures. Osteoporosis Int. 9:405-409, 1999
  • 45) Risteli, J., Elomaa, I., Niemi, S. et al.:Radioimmunoassay for the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen:A new serum marker of bone collagen degradation. Clin. Chem. 39:635-640, 1995
  • 46) 清原 剛, 黒江謙治, 秩父賢司ほか:RIA法による血中ICTP(l型コラーゲン-C-テロペプチド)の測定. ホルモンと臨床42:1189-1193, 1994

P.399 掲載の参考文献

  • 4) 折茂 肇, 杉岡洋-ほか:原発性骨粗鬆症の診断基準 (1996年改訂版) . Osteoporosis Jpn. 4:643-652, 1996
  • 5) Giguere, Y., Rousseau, F.:The genetics of osteoporosis:`complexities and difficulties:. Clin. Genet. 57:161-169, 2000
  • 6) O'Donovan, M. C., Oefner, P. J., Roberts, S. C. et al.:Blind analysis of denaturing high performance liquid chromatography as a tool for mutation detection. Genomics 52:44-49, 1998
  • 20) Miyao, M., Hosoi, T., Emi, M. et al.:Association of bone mineral density with a dinucleotide repeat polymorphism at the calcitonin (CT) locus. J. Human Genetics (in press)
  • 22) Langdahl, B. L, Knudsen, J. Y., Jensen, H. K. et al.:A sequence variation:713-8delC in thetransforming growth factor-β1 gene has higher prevalence in osteoporotic women than in normal women and is associated with very low bone mass in osteoporotic women and increased bone turnover in both osteoporotic and normal women. Bone 20:289-294, 1997
  • 23) Yamada, Y., Hosoi, T., Makimoto, F. et al.:Transforming growth factor β-l gene polymorphism and bone mineral density in Japanese adolescents. Am. J. Med. 106:477-479, 1999
  • 25) Utterlinden, A. G., Burger, H., Huang, Q. et al.:Relation of alleles of the collagen type I α 1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N. Engl J.:Med. 338:1016-1021, 1998

第4章 骨粗鬆症治療薬の作用機序と効果

P.414 掲載の参考文献

  • 2) Chiv, K. M., Ju, J., Mayes, d. et al.:Changes in bone resorption during the menstrual cycle. J. Bone Miner. Res. 14:609-615, 1999
  • 3) Smith, E. P., Boyd, J., Frank, G. P. et al:Estrogen resistance caused by a mutation in the estrogen receptor gene in a man. N. Engl. J. Med. 331:1056-1061, 1994
  • 11) Gennari, C., Agnusdei, D., Civitelli, R. et al.:Effects of estrogens on vitamin D in metabolism in postmenopausal osteoporotic women. Postmenopausal hormone therapy:benefits and risks. (Fioretti, P. et al. ed. ) Raven Press, New York, 1987, p. 243-253
  • 16) Arts, J., Kuiper, G. G., Janssen, J. M. et al.:differential expression of estrogen receptors α and β mRNA during differentiation of human osteoblast SV-HFO cells. Endocrinology 138:5067-5070, 1997
  • 17) Onoe, Y., Miyaura, C., Ohta, H. et al.:Expression of estrogen receptor β in rat bone. Endocrinology 138:4509-4512, 1997
  • 18) Lim, S. K., Won, Y. J., Lee, H. C. et al.:APCR analysis of ER alpha and ER beta mRNA abundance in rats and the effect of ovariectomy. J.Bone Miner. Res. 14:1189-1196, 1999
  • 20) Pan, L. C., Ke, H. Z., Simmons, H. A. et al.:Estrogen receptor-alpha knockout (ERKO) mice lose trabecular and cortical bone following ovariectomy. J. Bone Miner. Res. 12:S134, 1997
  • 21) Windel, S. H., Vidal, O., Andersson, G. et al.:Increased cortical bone mineral content but unchanged trabecular bone density in female ER beta (-/-) mice. J. Clin.Invest. 104:895-901, 1999
  • 24) Ishimi, Y., Miyaura, C., Jim, C. et al.:IL-6 is produced by osteoblasts and induces bone resorption. J.Immunol. 145:3297-3303, 1990
  • 28) Girasole, G., Paseri, G., Knutson, S. et al.:A distinct and hierarchically central role of interleukin-11 among other cytokines in osteoclast development. J. Bone Miner. Res. 8:117-123, 1993
  • 32) Hughes, d. E., dai, A., Triffee, J. C. et al.:Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-β. Nature Med. 2:1132-1136, 1996
  • 33) Tompkinson, A., Gevers, E. F., Wit, J. M. et al:The role of estrogen in the control of rat osteocyte apoptosis. J. Bone. Miner. Res. 13:1243-1250, 1998
  • 34) Powers, M. S., Schenkel, L, darley, P. E. et al.:Pharmacokinetics and pharmacodynamics of transdermal dosage form of 17β-estradiol:comparison with conventional oral estrogens used for hormone replacement. Am. J. Obstet. Gynecol. 152:1099-1106, 1985
  • 37) Ettinger, B., Genant, H. K., Steigen, P. et al:Low dosage micronized 17β-estradiol prevents bone loss in postmenopausal women. Am. J. Obstet. Gynecol. 166:479-488, 1992
  • 38) O'sullivan, A. J., Cramptor, L. J., Frend, J. et al.:The route of estrogen replacement therapy confers divergent effects on substrate oxidation and body composition in postmenopausal women. J. Clin. Invest. 102:1035-1040, 1998
  • 39) Stevenson, J. C., Cust, M. P., Ganger, K. F. et al:Effects of transdermal versus oral hormone replacement therapy on bone density in spine and proximal femur in postmenopausal women. Lancet 336:265-269, 1990
  • 40) PEPI Study Group:Effects of hormone replacement therapy on bone mineral density:results from the postmenopausal. estrogen/progestin interventions (PEPI) trial. The Writing Group for the PEPI. JAMA 276:1389-1396, 1996
  • 41) Munk Jensen, N., Nielsen, S. P., Obel, E. P. et al:Reversal of postmenopausal vertebral bone loss by oestrogen and progestogen:adouble blind placebo controlled study. Br. Med. J. 296:1150-1152, 1988

P.432 掲載の参考文献

  • 7) Turuer, C. H., Sato, M., Bryant, H. U.:Raloxifene preserves bone strength and bone mass in ovariectomized rats. Endocrinology 135 (5):2001-2005, 1994
  • 8) Sato, M., Kim, J., Short, L. L. et al.:Longitudinal and cross-sectional analysis of raloxifene effects on tibiae from ovariectomized aged rats. J. Pharmcol Exp. Ther. 272:1252-1259, 1995
  • 9) Bryant, H. U., Turner, C. H., Frolik, C. A. et al.:Long-term effects of raloxifene on bone, cholesterol alld uterus in ovariectomized rats. Bone 16 (Suppl):116S, 1995
  • 11) Yang, N. N., Bryant, H. U., Hardikar, S. et al:Estrogen and raloxifene stimulate transforming growth factor-β3 gene expression in rat bone:apotential mechanism for estrogen-or raloxifene-mediated bone maintenance. Endocrinology 137 (5):2075-2084, 1996
  • 12) Yang, N. N., Venugopalan, M., Hardikar, S. et al:Identification of an estrogen response element activated by metabolites of 17β-estradiol and raloxifene [see comments][published erratum appears in Science 275 (5304):1249, 19971 Science 273:1222-1225, 1996
  • 15) Turner, A. S., Hannan, M. K., Bouxsein, M. L. et al.:Effects of raloxifene on bone density and bone strength in aged, ovariectomized ewes. 45th Annual Orthopaedic Research Society Program Proceedings 230, 1999
  • 16) Jerome, C. P., Lees, C. J., Register, T. C. et al.:lliac and lumbar vertebral histomorphometry, bone densitometry and bone biomarker data from raloxifene-treated macaques-ASBMR 19th Annual Meeting. J. Bone Miner. Res. 12 (1):347, 1997
  • 17) Delmas, P. D., Bjarnason, N. H., Mitlak, B. H. et al.:Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N. Engl. J. Med. 337 (23):1641-1647, 1997
  • 18) Delmas, P. D., Bjarnason, N., Mitlak, B. H. et al.:Raloxifene HCl prevents bone loss and lowers serum cholesterol without endometrial stimulation in early postmenopausal women. The Endocrine Society 79th annual meeting program. 67, 1999
  • 21) Ettinger, B., Black, d. M., Mitlak, B. H. et al:Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene:Results from a 3-year randomized Clinical trial. J. Am. Med. Assoc. 282 (7):637-645, 1999
  • 24) Kauffman, R. F, Bensch, W. R., Roudebush, R. E. et al:Hypocholesterolemic activity of raloxifene (LY13948d:pharmacological characterization as a selective estrogen receptor modulator. J. Pharmacol. Exp. Ther. 280 (1):146-153, 1997
  • 28) Wiernicki, T., Glasebrook, A., Phillips, d. L. et al:Estrogen and a novel tissue selective estrogen receptor modulator raloxifene directly modulate vascular smooth muscle cell functions:Implications in the cardioprotective mechanism of estrogen. Circulation 94 (8 suppl. d:1278, 1996
  • 29) Rahimian, R., Laher, I., Dube, G. et al.:Estrogen and selective estrogen receptor modulator LY117018 enhance release of nitric oxide in rat aorta. J. Pharmacol. Exp. Ther. 283 (1):116-122, 1997
  • 34) Hulley, S., Grady, D., Bush, T. et al.:Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. J. Am. Med. Assoc. 280 (7):605-613, 1998
  • 35) Press Release of the Women's Health Initiative (WHI) Study. Hormone replacement study finds slight rise in heart problems. The Washington Post via DowVision A Section, The. Washington Post Co. A08, 2000
  • 36) Barrett-Connor, E., Wenger, N. K., Grady, d. et al.:Coronary heart disease in women, randomized Clinical trials, HERS and RUTH. Maturitas 31(1):l-7, 1998
  • 38) Fuchs-Young, R., Magee, d. E., Cole, H. W. et al.:Raloxifene is a tissue specific antiestrogen that blocks tamoxifen or estrogen stimulated uterogenic effects. Endocrinology 136:37, 1995
  • 44) PEPI Trial Writing Group:Effects of hormone replacement therapy on endometrial histology in postmenopausal women. The Postmenopausal Estrogen/Progestin Interventions (PEPI) Trial. The Writing Group for the PEPI Trial. J. Am. Med. .Assoc. 275 (5):370-375, 1996
  • 49) Fugere, P., Scheele, W. H., Shah, A. et al:Uterine effects of raloxifene in comparison with continuous-combined hormone replacement therapy in postmellopausal women. Am. J. Obstet. Gynecol. 182 (3):568-574, 2000
  • 53) Barrett-Connor, E.:Hormone replacement and cancer. Br. Med. Bull. 48:345-355, 1992
  • 54) Fuchs-Young, R., Iversen, P., Shelton, P. et al.:PreClinical demonstration of specific and potent inhibition of mammary tumor growth by new selective estrogen receptor modulators (SERMs)-88th Annual Meeting. Proc. Am. Assoc. Cancer Res. 38:573, 1997
  • 56) Daniel, C. W., Silberstein, G. B., Strickland, P.:direct action of 17β-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Res. 47 (22):6052-6057, 1987
  • 57) Short, L. L., Glasebrook, A. L., Adrian, M. d. et al.:distinct effects of selective estrogen receptor modulators on estrogen dependent and estrogen independent human breast cancer cell proliferation. J. Bone Miner. Res. 11(1):S482, 1996
  • 58) Thompson, E. W., Reich, R., Shima, T. B. et al.:differential regulation of growth and invasiveness of MCF-7 breast cancer cells by antiestrogens. Cancer Res. 48 (23):6764-6768, 1988
  • 62) Collaborative Group on Hormonal Factors in Breast Cancer:Breast cancer and hormone replacement therapy:collaborative reanalysis of data from 51 epidemiological studies of 52705 women with breast cancer and 108411 women without breast cancer. Lancet 350:1047-1059, 1997
  • 65) Polo-Kantola, P., Portin, R., Polo, O. et al.:The effect of short-term estrogen replacement therapy on cognition:a randomized, double-blind, cross-over trial in postmenopausal women. Obstet. Gynecol. 91 (3):459-466, 1998
  • 68) Wu, X., Glinn, M., Su, Y. et al.:Raloxifene increases hippocampal cholineacetyltransferase activity in ovariectomized rats. So6. Neurosci. Abstr. 24 (1):732, 1998
  • 74) Lakshmanan, M., Bryant, H. U., Paul, S. M. et al.:Central nervous system effects of raloxifene:evidence from animal models and controlled Clinical trials in postmenopausal women. Climacteric 2 (Suppl. 1):331, 1999
  • 76) Fleisch, H.:Bisphosphonates in Bone disease:From the Laboratory to the Patient. Partheonon Publishing, 1997
  • 77) Liberman, U. A., Weiss, S. R., Broll, J. et al.:Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The Alendronate Phase III Osteoporosis Treatment Study Group. N. Engl. J. Med. 333:1437-1443, 1995
  • 79) Pizzani, E., Valenzuela, G.:Esophagitis associated with alendronate sodium. Va. Med. Q. 124 (3):181-182, 1997
  • 84) Hemminki, K., Rajaniemi, H., Lindahl, B. et al.:Tamoxifen-induced DNA adducts in endometrial samples from breast cancer patients. Cancer Res. 56 (19):4374-4377, 1996
  • 87) 中澤隆弘, Bryant, H. U.:ラロキシフェン:骨への選択的作用とそのメカニズム. The Bone 11(1):89-102, 1997
  • 90) Love, R. R., Wiebe, d. A., Newcomb, P. A. et al.:Effects of tamoxifen on cardiovascular risk factors in postmenopausal women. Ann. Intern. Med. 115:860-864, 1991
  • 91) Yang, N. N., Bryant, H. U., 中澤隆弘:ラロキシフェンの組織特異的作用の分子機構. Mol. Med. 35 (4):520-526, 1998
  • 92) Bryant, H. U., 福山隆子, 中澤隆弘:ラロキシフェンとエストロゲンの骨作用における類似性. 蛋白質核酸酵素45 (6):1102-1108, 2000

P.443 掲載の参考文献

  • 6) Naveh-Many, T., Raue F, Grauer, A. et al:Regulation of calcitonin gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat. J. Bone Miner. Res. 7:1233-1237, 1992
  • 11) Lee, S. K., Galson, d. L. et al.:Calcitonin downregulates calcitonin receptor mRNA expression in osteoclast-like cells (OLC) generated from hematopoietic stem cell lines. J. Bone Miner. Res. 11:S277, 1996
  • 15) Orcel, P., Takahashi, K. et al.:Identification and characterization of two Gs protein-coupling sequences in the porcine calcitonin.Bone 16(Suppl. 1):87S, 1995
  • 28) 藤田拓男, 井上哲郎ほか:骨粗鬆症に対するエルカトニンの効果:プラセボを対照薬とした多施設二重盲検比較試験. 医学のあゆみ152:261-282, 1990
  • 30) 三浦隆行, 井上哲郎ほか:骨粗鬆症に伴う腰背痛に対するエルカトニン長期投与の臨床効果. 診断と新薬 32:110-131, 1995

P.456 掲載の参考文献

  • 23) Frith, J. C., Monkkonen, J., Blackburn, G. M. et al.:Clodronate and lioposome-encapsulated clodronate are metabolized to a toxic ATP analog, Adenosine 5:-β, γ-dichloromethylene triphosphate, by mammalian cells in vitro. J. Bone Miner. Res. 12:1358-1367, 1997
  • 25) 藤田拓男, 折茂 肇, 井上哲郎ほか:退行期骨粗鬆症に対するアルファカルシドールを対照としたエチドロン酸二ナトリウム(EHDP)の二重盲検比較試験. Clin. Eval. 20:261-302, 1993
  • 26) Storm, T., Kollerup, G., Thamsborg, G. et al.:Five years of Clinical experience with intermittent cyclical etidronate for post menopausal osteoporosis. J. Rheumatol. 23:1560-1564, 1996
  • 32) Francis, M. D., Slough, C.:Acute intravenous infusion of disodium dihydrogen (1-hydroxy-ethylidene) diphosphonate:Mechanism of cytotoxicity. J. Pharm. Sci. 73:1097-1100, 1983
  • 36) libermann, U. A., Weiss, S. R., Broll, J. et al.:Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. N. Engl. J. Med. 333:1437-1443, 1995
  • 38) Cummings, S. R., Black, d. M., Thompson, d. E. et al.:Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures. JAMA 280:2077-2082, 1998

P.469 掲載の参考文献

  • 1) Reid, I.:vitamin D and its metabolites in the management of osteoporosis, in Osteoporosis. (Marcus, R., Feldman, D., Kelsey, J. eds. ), Academic Press, San diego, London, Boston, New York, Sydney, Tokyo, Toront, 1996, p. 1169-1190
  • 2) Rosen, C.:vitamin D and bone health in adults and the elderly, in vitamin D:Physiology, molecular biology, and Clinical applications. (Holick, M. ed. ) Humana Press, Totowa, 1999, p. 287-305
  • 3) 板橋 明:原発性骨粗鬆症. 病態生理. 最新内科学体系73 骨疾患. (坂根 剛, 森井浩世 編)中山書店, 東京, 1995, p. 146-154
  • 4) 板橋 明:骨粗鬆症と骨軟化症. 内科学. (黒川 清, 松澤佑次 編) 文光堂, 東京, 1999, p. 1195-1199
  • 5) Holick, M.:Evolution, Biologic functions, and recommend and dietary allowances for vitamin D, in vitamin D:Physiology, molecular biology, and Clinical applications. (Holick, M. ed. ) Humana Press, Totowa, 1999, p. l-16
  • 11) Andersson, S., davis, D., dahlback, H. et al.:Cloning, Structure, and Expression of the Mitochondrial Cytochrome P-450 Sterol 26-Hydroxylase, a Bile Acid Biosynthetic Enzyme. J. Biol. Chem 2. 264:8222-8229, 1989
  • 17) Optimal calcium intake. NIH consensus development panel on optimal calcium intake. JAMA 272:1942-1948, 1994
  • 18) dawson-Hughes, B., Dallal, G., Krall, E. et al.:Acontrolled trial of the effect of calcium supplementation on bone density in postmenopausal women. N. Engl. J. Med. 323:878-883, 1990
  • 19) Reid, I., Ames, R., Evans, M. et al.:Effect of calcium supplementation on bone loss in postmenopausal women. N. Engl. J. Med. 328:460-464, 1993
  • 23) Heikinheimo, R., Inkovarra, J., Harju, E. et al.:Annual injection of vitamin D and ractures of aged bones. Calcif. Tissue Int. 51:105-110, 1992
  • 35) 伊丹康人, 藤田拓男, 井上哲郎ほか:アルファカルシドールの骨粗鬆症に対する効果. 医学のあゆみ123:958-973, 1982
  • 36) Orimo, H., Shiraki, M., Hayashi, Y. et al.:Effects of 1α-hydroxyvitamin D on lumbar bone mineral density and vertebral fractures in patients with postmenopausal osteoporosis. Calcif. Tissue Int. 54:370-376, 1994
  • 40) lchikawa, F., Sato, K., Nanjo, M. et al.:Mouse primary osteoblasts express vitamin D325-hydroxylase mRNA and convert 1α-hydroxylvitamin D3 into 1α, 25-dihydroxyvitamin D3. Bone 16:129-135, 1995
  • 42) Chen, J., Shiraki, M., Hasumi, K. et al.:1-α-hydroxyvitamin D3 treatment decreases bone turnover and modulates calcium-regulating hormones in early postmenopausal women. Bone 20:557-562, 1997
  • 43) 西井易穂:活性型ビタミンD誘導体の開発, 特にカルシウム作用と分化誘導作用の分離. ビタミン72:461-467, 1998
  • 45) Abe, E., Miyaura, C., Sakagami, H. et al.:differentiation of mouse myeloid leukemiac cells induced by 1α, 25-dihydroxyvitamin D3. Proc. Natl. Acad. Sci. USA 78:4990-4994, 1981
  • 46) Kubodera, N., Sato, K., Nishii, Y.:Characteristics of 22-Oxacalcitriol (OCT) and 2β-(3-hydroxypropoxy) calciteriol (Ed-7d . (Feldman, D., Glorieux, F., Pike, J. eds. ) Academic Press, San diego, London, Boston, New York, Sydney, Tokyo, Toront, 1997, p. 1071-1086
  • 47) Tsurukami, H., Nakamura, T., Suzuki, K. et al.:Anovel synthetic vitamin D analogue, 2β-(3-hydroxypropoxy) 1α, 25-dihydroxyvitamin D3 (Ed-7d, increases bone mass by stimulating the bone formation in normal and ovariectomized rats. Calcif. Tissue.Int. 54:142-149, 1994

P.480 掲載の参考文献

  • 1) Consensus development Conference:diagnosis, prophylaxis and treatment of osteoporosis. Am. J. Med. 94:646-650, 1994
  • 2) 日本骨代謝学会, 骨粗鬆症診断基準委員会:原発性骨粗鬆症の診断基準(1996年改訂版). Osteoporosis Jpn. 4:643-652, 1996
  • 3) 岩永貞昭ほか 監:ビタミンK-医学生物学領域における新展開. メディカルジャーナル社, 1994
  • 5) Pettifor, J. M., Benson, R.:Congenital malformations associated with the administration of oral anticoagulants during Pregnancy. J. Pediatr. 86:459-462, 1975
  • 6) Price, P. A., Otsuka, A. S., Poser, J. W. et al:Characterization of a γ carboxyglutamic acidcontaining protein from bone. Proc. Natl. Acad. Sci. USA 73:1447-1451, 1976
  • 7) Hauschka, P. V., Reid, M. L:Vitamin K dependence of a calcium-binding protein containing γ carboxyglutamic acid in chicken bone. J. Biol. Chem. 253:9063-9068, 1978
  • 8) Price, P. A., Williamson, M. K.:Primary structure of bovine matrix Gla protein, a new vitamin K-dependent bone protein. J. Biol. Chem. 260:14971-14975, 1985
  • 13) 金木正夫, 水野有三, 細井孝之ほか:退行期骨粗鬆症における血清ビタミンK濃度の検討. 日老医誌32:195-211, 1995
  • 14) Plantalech, L, Guillaumont, M., Philippe, V. et al:Impairment of γ calboxylation of circulating osteocalcin (bone gla protein) in elderly women. J. Bone Miner. Res. 6:1211-1216, 1991
  • 18) Plantalech, L., Chapuy, M. C., Guillaumont, M. et al.:Impaired calboxylation of serum osteocalcin in elderly women. Osteoporosis. Effects ot vitamin K1 treatment. (Cristiansen, C., Overgaard, K. eds. ) 1990, p. 345-347
  • 23) Kiyama, Y., Hara, K., Ohkawa, I. et al.:Effects of menatetrenone on bone loss induced by ovariectomy in rats. Jpn. J. Pharmacol. 62:145-153, 1993
  • 25) 折茂 肇, 藤田拓男, 小野村敏信ほか:骨粗鬆症に対する Ea-0167(Menatetrenone)の臨床評価. 臨床評価 20:45-100, 1992

P.490 掲載の参考文献

  • 17) Ishizuya, T., Uzawa, T., Takao, R. et al.:Parathyroid hormone inhibits differentiation of bon marrow adipocytes. J. Bone Miner. Res. 14:S209, 1999
  • 25) Andress, d. L, Birnbaum, J.:Human osteoblast-derived insulin-like growth factor (IGF) binding protein-5 stimulates osteoblast mitogenesis and potentiates IGF action. J. Biol. Chem. 267:22467-22472, 1992
  • 29) Klein-Nulend J., Pilbeam, C. C., Harrison, J. R. et al.:Mechanism of regulation of prostaglandin production by parathyroid hormone, interleukin-11 and cortisol in cultured mouse parietal bones. Endocrinology 128:2503-2510, 1991
  • 30) Centrella, M., McCarthy, T. L, Canalis, E.:Parathyroid hormone modulates transforming growth factor β activity and binding in osteoblast-enriched cell cultures from fetal rat parietal bone. Endocrinology 85:5889-5893, 1988
  • 39) Sone, T., Fukunaga, M., Ono, S. et al.:A small dose of human parathyroid hormone (1-34) increased bone mass in the lumbar vertebrae in patients with senile osteoporosis. Miner. Electrolyte Metab. 21:232-235, 1995

P.505 掲載の参考文献

  • 5) Harris, S. E.:Recombinant bone morphogenetic protein 2 accelerates bone cell differentiation and stimulation BMP 2 mRNA expression and BMP 2 promoter activity in primary fetal rat calvarial osteoblast cultures. Mol. Cell. Diff. 3:137-155, 1997
  • 6) Ghosh-Choudhury, N., Windle, J. J., Koop, B. A. et al.:Immortalized murine osteoblasts derived from BMP2-T-antigen expressing transgenic mice. Endocrinology 137:331-339, 1996
  • 12) Garrett, I. R., Escobedo, A., Mundy, G. R.:N2-containing bisphosphonates risedronate and ibandronate stimulate bone formation in organ culture. J. Bone Miner. Res. 14 (Suppl. 1):S525, 1999