検索条件をクリア

書籍詳細

未契約
書籍名 肥満と脂肪エネルギー代謝 ―メタボリックシンドロームへの戦略―
出版社 建帛社
発行日 2008-04-25
著者
  • 日本栄養・食糧学会(監修)
  • 河田照雄(責任編集)
  • 斉藤昌之(責任編集)
  • 小川正(責任編集)
ISBN 9784767961248
ページ数 277
版刷巻号 初版
分野
閲覧制限 未契約

現在大きな社会問題となってきている代謝性疾患,メタボリックシンドローム発症に深く関わる肥満について,基礎・臨床的研究の成果をわかりやすく解説し,肥満と身体の関係を新しい視点と手法から捉える。 ヒトを対象としたアプローチ(消化管ホルモン ヒューマン・カロリメータ 運動の役割 褐色脂肪) エネルギー・脂質代謝調節の分子機構 肥満病態と食品・医薬品による予防・治療 ほか

目次

  • 表紙
  • 序文
  • 目次
  • 序章 肥満研究の潮流
    • 1. はじめに
    • 2. 世界の肥満研究の推移
    • 3. 肥満研究における主要な成果と手法の開発
    • 4. 臨床診断基準としのて肥満症, メタボリックシンドローム設定の意義と戦略
      • (1) 肥満と肥満症の区別
      • (2) メタボリックシンドロームとは
      • (3) メタボリックシンドロームの疾患概念を確立する意義
    • 5. 肥満の社会的背景と医療経済
    • 6. おわりに
  • 第I編 ヒトを対象とした研究アプローチ
    P.11閲覧
    • 第1章 消化管ホルモンによる食欲・体重調節; 肥満治療の切り札か?
      • 1. はじめに
      • 2. レプチンの発見と食欲・体重調節ループ
      • 3. 消化管ホルモンによる食欲・体重調節
      • 4. 一塩基多型からみた食欲調節ペプチドの意義
      • 5. 食欲調節ペプチドからの創薬
      • 6. 肥満外科手術
      • 7. おわりに
  • 第2章 ヒューマン・カロリメータによるエネルギー代謝測定
    P.27閲覧
    • 1. エネルギー消費測定の意義と測定方法
    • 2. ヒューマン・カロリメータの仕様
    • 3. 睡眠時エネルギー代謝
    • 4. 肥満者のエネルギー代謝
    • 5. 生活習慣の改善などによる安静時エネルギー消費量増大の可能性
    • 6. おわりに
  • 第3章 肥満・メタボリックシンドローム予防・改善における運動の役割
    P.47閲覧
    • 1. 肥満・糖尿病と自律神経
      • (1) 自律神経活動の評価法
      • (2) 心拍変動スペクトル解析の応用
    • 2. 運動による自律神経活動の賦活とその生理学的意義
    • 3. 肥満・メタボリック症候群における運動の効果
    • 4. 運動と筋細胞由来の生理活性物質
    • 5. 骨格筋電気刺激による他動的運動の効果
  • 第4章 褐色脂肪と肥満・メタボリックシンドローム: 実験動物からヒトへ
    P.63閲覧
    • 1. はじめに
    • 2. 褐色脂肪とUCP1の活性調節
      • (1) UCP1の活性調節
      • (2) UCP1の発現調節
    • 3. 褐色脂肪の機能と生理的役割 ―動物実験からの知見―
      • (1) 体温調節
      • (2) エネルギー代謝と体脂肪調節
      • (3) 糖代謝
    • 4. ヒトの褐色脂肪
      • (1) 褐色脂肪はヒトにはないのか?
      • (2) PET-CTによるヒト褐色脂肪の検出
      • (3) ヒト褐色脂肪の存在部位と頻度
      • (4) ヒト褐色脂肪の機能
    • 5. おわりに
  • 第II編 エネルギー・脂質代謝調節の分子機構
    P.83閲覧
    • 第5章 抗肥満に関わる骨格筋の役割: カロリー制限と運動療法の理論と実際
      • 1. はじめに
      • 2. カロリー制限および絶食時の筋肉代謝
        • (1) 絶食時の体内でのエネルギーの動き
        • (2) 筋肉でのエネルギー消費量の変化
        • (3) 絶食やカロリー制限に伴う筋肉での遺伝子発現の変化
      • 3. 運動による筋肉代謝
        • (1) 運動強度, 運動時間による脂肪燃焼の程度
        • (2) 運動中の脂肪燃焼亢進機序
        • (3) 運動トレーニングによる脂肪燃焼亢進機序
      • 4. ヒトではカロリー制限と運動は同程度体脂肪を減少させる
      • 5. 体脂肪を減少させるための, カロリー制限, 運動量の決め方
      • 6. おわりに
  • 第6章 AMPキナーゼによる生体エネルギー代謝調節機構
    P.109閲覧
    • 1. はじめに
    • 2. AMPKの構造と活性化機構
      • (1) AMPKの生化学的特性
      • (2) AMPKの活性化機構
    • 3. AMPKによる代謝調節作用
      • (1) 骨格筋におけるAMPKの代謝調節作用
      • (2) 肝臓におけるAMPKの代謝調節作用
    • 4. レプチンによる代謝・摂食調節作用とAMPK
      • (1) 骨格筋におけるレプチンの代謝調節作用とAMPK
      • (2) レプチンによるAMPKの細胞内局在制御と脂肪酸酸化
      • (3) 視床下部におけるレプチンの摂食抑制作用とAMPK
    • 5. おわりに
  • 第7章 脂質代謝関連遺伝子の転写制御と肥満
    P.129閲覧
    • 1. はじめに
    • 2. 肝臓における遺伝子発現調節によるVLDL分泌制御
    • 3. 遺伝子発現調節による胆汁酸合成・HDL産生調節
    • 4. おわりに
  • 第8章 胆汁酸によるエネルギー代謝調節機構の分子メカニズムと臨床応用
    P.139閲覧
    • 1. メタボリックシンドローム
      • (1) 世界に蔓延するメタボリックシンドローム
      • (2) メタボリックシンドロームの診断基準
      • (3) メタボリックシンドロームと高コレステロール血症の併発
      • (4) メタボリックシンドロームにおける脂質代謝異常と非アルコール性脂肪性肝疾患
    • 2. 胆汁酸
      • (1) 胆汁酸の生合成と遺伝子疾患
      • (2) 胆汁酸の生合成制御
      • (3) 胆汁酸の腸肝循環
    • 3. シグナル伝達分子としての胆汁酸
      • (1) 胆汁酸による分子制御
      • (2) 胆汁酸による脂質代謝調節
      • (3) 胆汁酸によるエネルギー代謝調節
    • 4. 胆汁酸代謝調節を介した肥満・糖尿病治療への新規アプローチ
      • (1) 胆汁酸吸着レジンの血清コレステロール低下作用
      • (2) 胆汁酸吸着レジンの胆汁酸代謝・糖代謝への影響
      • (3) 臨床検討における胆汁酸吸着レジンの糖尿病への影響
      • (4) 胆汁酸吸着レジンのメタボリックシンドローム治療薬への可能性
    • 5. 胆汁酸代謝と糖・エネルギー代謝
      • (1) FXRと糖新生の制御
      • (2) 胆汁酸とインスリン感受性・エネルギー代謝の制御
      • (3) FGF15/19による生体機能制御
    • 6. おわりに
  • 第III編 肥満病態と食品・医薬品による予防・治療
    P.177閲覧
    • 第9章 アディポサイトカインと病態
      • 1. はじめに
      • 2. レプチン
        • (1) 摂食抑制作用機構
        • (2) レプチンおよびレプチン受容体遺伝子異常と疾患
      • 3. アディポネクチン
        • (1) 発現調節機構
        • (2) アディポネクチン受容体とシグナル伝達
        • (3) 疾病治療薬としての有用性
      • 4. PAI-1
      • 5. ビスファチン
      • 6. TNF-α
      • 7. レジスチン
      • 8. MCP-1
      • 9. おわりに
  • 第10章 脂肪組織リモデリングの分子機構と医学応用
    P.203閲覧
    • 1. はじめに
    • 2. 脂肪組織におけるマクロファージ浸潤の分子機構
    • 3. 肥大化脂肪細胞におけるケモカイン産生増加の分子機構
    • 4. 肥大化脂肪細胞におけるMAPKの変化
    • 5. 肥大化脂肪細胞におけるMKP-1遺伝子導入の効果
    • 6. 脂肪細胞とマクロファージの相互作用
    • 7. 炎症性アディポサイトカインとしての飽和脂肪酸
    • 8. n-3多価不飽和脂肪酸の抗炎症作用
    • 9. おわりに
  • 第11章 肥満・メタボリックシンドロームと食品機能
    P.217閲覧
    • 1. メタボリックシンドローム
      • (1) 背景
      • (2) メタボリックシンドロームの定義と診断基準
      • (3) メタボリックシンドロームの疾患概念を確立する意義
    • 2. メタボリックシンドロームに対する有効食品
      • (1) 食品の有する機能
      • (2) 肥満症に対する有効食品
      • (3) 核内受容体リガンド機能を有する食品成分の探索とその有用性
      • (4) 肥満と炎症: 食品成分による炎症性因子の分泌抑制作用
      • (5) 食品成分による抗炎症性因子の分泌促進作用
    • 3. おわりに
  • 第12章 脂肪細胞制御による肥満・糖尿病治療の可能性とその展望
    P.239閲覧
    • 1. 背景: 脂肪細胞制御の必要性
    • 2. 肥満における脂肪細胞数の意義
    • 3. 脂肪細胞のライフサイクル (生活史)
    • 4. 脂肪細胞の増殖制御機構
    • 5. 脂肪細胞の肥大と増殖のクロストーク
    • 6. 脂肪細胞数とインスリン抵抗性
    • 7. おわりに
  • 終章 肥満研究の今後の展望とメタボリックシンドローム対策
    P.253閲覧
    • 1. はじめに
    • 2. 肥満, メタボリックシンドロームとアディポサイトカイン
    • 3. 食事と運動から見た肥満
    • 4. おわりに
  • 索引
    P.258閲覧
  • 責任編集者 / 著者
    P.262閲覧
  • 奥付

参考文献

序章 肥満研究の潮流

P.9 掲載の参考文献

  • 1) Shell E. R. (栗木さつき 訳): The Hungry Gene: The Science of Fat and the Future of Thin (邦訳:太りゆく人類 肥満遺伝子と過食社会) 早川書房, 2003.
  • 2) WHO:The world health report 2002-Reducing Risks, Promoting Healthy Life.
  • 3) 梁美和: メタボリックシンドロームとは. メタボリックシンドローム 実践マニュアル(松澤佑次 監修, 船橋 徹 編集), フジメディカル出版, 2005, p7-16.
  • 5) 古川雅一, 西村周三: 肥満に伴う糖尿病や高血圧性疾患の医療費に関する研究. 京都大学大学院経済学研究科 Working Paper(http://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/26467/browse-date). J-57(2007).

第I編 ヒトを対象とした研究アプローチ

P.23 掲載の参考文献

  • 2) Farooqi I.S., Jebb S.A., Lanqmack G. et al:Effects of recombinant leptieficiency.N Engl J Med 1999;341879-884.
  • 4) Inui A.:Transgenic approach to the study of body weight regulation. Pharmacol Rev 2000;52(1);35-61.
  • 10) Inui A.:Cytokines and sickness behavior:implications from knockout animal models. Trends Immunol 2001;22(9);469-473.
  • 12) Inui A.:Cancer anorexia-cachexia syndrome:Current issues in research and management. CA Cancer J Clin 2002;52(2);72-91.
  • 15) Asakawa A.,Inui A.,Kaga T.et al:Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 2001;120(2);337-345.
  • 16) Nakazato M., Murakami N., Date Y. et al:Kangawa K., Matsukura S.:A role for ghrelin in the central regulation of feeding. Nature 2007;409(6817);194-198.
  • 22) Neary N.M.,Smoll C.J.,Wren A.M.et al:Ghrelin increases energy intake in cancer patients with impaired appetite:acute,randomized,placebo-controled trial. J Clin Endocrinol Metab 2004;89;2832-2839.
  • 23) Farooqi I. S., Keogh U.M., Yeo G.S. et al. Clinical spectrum of obesity and mutationsin the melanocortin 4 receptor gene.N Engl J Med 2003;348;1085-1095.
  • 27) Dunstan C., Step hen B.:The Obesity pipeline:current strategies in the development of anti-obesity drugs. Nat Rev Drug Discov 2006;5(11):919-931.
  • 28) Erondu,N.,Gantz,I.,Musser,B.et al:Neuropeptide Y5 receptor antagonism does not induce clinically meaningful weight loss in overweight and obese adults. Cell Metab. 2006:4(4);275-82.
  • 29) Kamiji M.N., Inui A.:Neuropeptide Y receptor selective ligands in the treatment of obesity. Endocr Rev 2007 in press.
  • 30) Gantz I.,Erondu N.,Malick M.et al:Efficacy and safety of intranasal peptide YY3-36for weight reduction in obese adults. J Clin Endocrinol Metab 92(5):1754-1757, 2007.
  • 34) Guijarro A., Suzuki S., Chen C. et al:Characterization of weight loss and weight regain mechanisms after Roux-en-Y gastric bypass in rats. Am J Physiol Reghl Integr Comp Physiol 2007;293(4);1474-1489.
  • 35) Balkau B., Deanfield J.E., Despres J.P. et al:International day for the evaluation of abdominal obesity (IDEA):a study of waist circumference, cardiovascular disease,and diabetes mellitus in 168,000 primary care patients in 63 coutries. Circulation 2007;116(17);1942-1951.

第2章 ヒューマン・カロリメータによるエネルギー代謝測定

P.43 掲載の参考文献

  • 1) Hill J.O.:Understanding and addressing the epidemic of obesity:an energyalance perspective. Endocrine Rev 2006;27;750-761.
  • 2) 健康・栄養情報研究会編:厚生労働省国民健康・栄養調査報告(平成16年度) . 第一出版, 2006.
  • 3) Weir J.B.:New methods for calculating metabolic rate with special referenceo protein metabolism. J.Physiol 1949;109;1-9.
  • 7) Moon J. K.:Whole body, human respiration calorimetry. Ph.D. thesis at University of Texas Austin 1991. (富士医科産業 中島茂氏より提供)
  • 8) Benedict F.G., Carpenter T.M.:The metabolism and energy transformations of healthy man during rest. The Carnegie Institute, Washington, D.C. (1910). (quoted from Borshein, E.& Bahr, R. Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. Sports Med 2003;33;1039.)
  • 9) Tokuyama K.,Sato M.,Ogata H.et al:Improved transient response of wholeody indirect calorimeter by deconvolution. Japanese Journal of Physicalitness and Sports Medicine 2007;56;315-326.
  • 10) FAO/WHO/UNUの専門委員会報告, 1985.
  • 11) Zhang K.,Sun M.,Warner P.et al:Sleeping metabolic rate in relation to bodyass index and body composition. Int J Obesity 2002;26;376.
  • 13) Ganpule A.A.,Tanaka S.,Ishikawa-Takata K.et al:Interindividual variabilityn sleeping metabolic rate in Japanese subjects. Eur. J. Clin. Nutr. (inress, 2007)
  • 14) Boyle P.J.,Scott J.C.,Krentz A.J.et al:Diminished brain glucose metabolisms a significant determinant for falling rate of systemic glucose utilizationuring sleep in normal humans. J Clin Invest 1994;93;529-535.
  • 15) Kelley D.E., Mandarino L.J.:Fuel selection in human skeletal muscle innsulin resistance:a reexamination. Diabetes 2000;49;677.
  • 16) Elia M.:Organ and tissue contribution to metabolic rate.In "Energy Metabolism and Cellular Corollaries"(edited by Kinney, J.M.& Tucker H.N.) pp61-79, Raven Press, New York, 1992.
  • 18) Levine, J.A.:Nonexercise activity thermogenesis (NEAT):environment andiology. Am J Physiol 2004;286;E675-E685.
  • 20) Heymsfield S.B., Harp J.B., Reitman M.L. et al:Why do obese patients not lose more weight when treated with low-calorie diets? A mechanistic perspective Am J Clin Nutr 2007;85;346-354.
  • 21) Dolezal B.A., Potteiger J.A., Jacobsen D.J. et al:Muscle damage and restingetabolic rate after resistance exercise with an eccentric overload.Med Sciports Exerc 2000;32;1202-1207.
  • 24) 平成9年国民栄養調査
  • 25) Sungsoo C., Marion D., Brown C.J.P. et al:The effect of breakfast type on total daily energy intake and body mass index:Results from the third National Health and Nutrition Examination Survey (NHANES III). J Am Col Nutr 2003;22;296-302.
  • 26) 中村和照, 宮下政司, 緒形ひとみほか:就寝直前の夕食が睡眠時のエネルギー代謝に及ぼす影響. 肥満研究 2007; 56; 250-255.
  • 28) Hofstetter A., Schutz Y., Jeruier E.et al:Increased 24-hour energy expendituren cigarette smokers. New Engl J Med 1986;314;79-82.
  • 29) Dulloo A.G. Duret C., Rohrer D. et al:Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 1999;70;1040-1045.
  • 31) Kim M.-S. et al:Anti-obesity effects of a-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Neture Medicine 2005;10; 727-7333.
  • 32) Watanabe M., Houten S.M., Mataki C. et al:Bile acids induces energyxpenditure by promoting intracellular thyroid hormone activation. Nature 2006;439;484.
  • 34) Lagouge M. et al:Resveratrol improves mitochondrial function and protectsgainst metabolic disease by acivating SIRT1 and PGC-1a. Cell 2006;127; 1109-1122.
  • 36) Dauncey M.J.:Metabolic effects of altering the 24 h energy intake in man,sing direct and indirect calorimetry. Br J Nutr 1980;43;257-269.
  • 38) Ferrannini E.:The theoretical bases of indirect calorimetry. Metabolism 1988;37;287-301.
  • 39) Brown D., Cole T.J., Dauncey M.J. et al:Analysis of gaseous exchange inpen-circuit indirect calorimetry.Medical Biological Engineering & Computing 1984;22;333-338.
  • 42) Dauncey M.J.,Murgatoyd P.R.,Cole T.J.:A human calorimeter for the directnd indirect measurement of 24h energy expenditure.Br J Nutr 1978;39;557566.
  • 43) Dauncey M.J.:Metabolic effects of altering the 24 h energy intake in man,sing direct and indirect calorimetry. Br J Nutr 1980;43;257-269.
  • 44) Charbonnier A., Jones C.D.R., Shutz Y. et al:A whole body transportable indirect calorimeter for human use in the tropics. Eur J Clin Nutr 1990;44; 725-731.
  • 45) Hofstetter A., Schutz Y., Jeruier E.et al:Increased 24-hour energy expendituren cigarette smokers. New Engl J Med 1986;314;79-82.
  • 47) Schutz Y.,Bessard T.,Jequier E.:Diet-induced thermogenesis measured over a whole day in obese and nonobese women. Am J Clin Nutr 1984;40;542-552.
  • 48) Dulloo A.G., Ismail M.N.,Ryall M. et al:A low-budget and easy-to-operate room respirometer for measuring daily energy expenditure in man. Am J Clin Nutr 1988;48;1367-1374.
  • 49) Schoffelen P.F., Westerterp M.K.R., Saris W.H.M. et al:A dual-respiration chamber system with automated calibration. J Appl Physiol 2072;83;2064-1997.
  • 52) de Jonge L.,Nguyen T.,Smith S.R.et al:Prediction of energy expenditure in whole body indirect calorimeter at both low and high levels of physicalctivity. Int J Obesity 2001;25;929-934.
  • 54) Henning B., Lofgren R., Sjostrom L.:Chamber for indirect calorimetry withmproved transient response. Biomedical Engineering 1996;34;207-212.
  • 55) Murgatroyd P.R., Shetty P.S., Prentice A.M. et al:Techniques for the measurement of human energy expenditure:a practical guide. Int J Obesity 1993; 17;549-568.
  • 56) Withers R.T., Gore C.J., Mackay M.H. et al:Some aspects of metabolismollowing 35 km road run. Eur J Appl Physiol 1991;63;436-443.
  • 57) Iwayama K., Miyashita M., Tokuyama K.:Changes in substrate oxidationersist overnight after the marathon race. Japanese Journal of Physicalitness and Sports Medicine 2008;57;163-168.

第3章 肥満・メタボリックシンドローム予防・改善における運動の役割

P.59 掲載の参考文献

  • 1) Matsumoto T.,Miyawaki T.,Ue H.et al:Autonomic responsiveness to acuteold exposure in obese and non-obese young women. Int J Obesity 1999;23; 793-800.
  • 3) 森谷敏夫, 林 達也, 枡田 出ほか: 運動前後における脳波, 自律神経, 血圧・循環調節ホルモンの変化. 運動生化学 1997; 9; 112-115.
  • 4) Amano M.,Kanda T.,Ue H. et al:Exercise training and autonomic nervousystem activity in obese individuals. Med Sci Sports Exer 2001;33;12871291.
  • 5) 森谷敏夫: 生活習慣病における運動療法の役割. 日本整形外科スポーツ医学会雑誌 2006; 25; 361-368.
  • 6) Moritani T.,Kimura T.,Hamada T.et al:Electrophysiology and Kinesiologyor Health and Disease. J Electromyogr Kinesiol 2005;15;240-255.
  • 7) Ue H., Masuda I., Yoshitake Y. et al:Assessment of cardiac autonomicervous activities by means of ECG R-R interval power spectral analysis andardiac depolarization-repolarization process. Ann Noninvasive Electrocardiol 2000;5;336-345.
  • 8) Billman G.E.:Cellular mechanisms for ventricular fibrillation.News Physiolci 1992;7;254-259.
  • 9) Billman G.E., Hoskins R.S.:Time-series analysis of heart rate variabilityuring submaximal exercise:evidence for reduced cardiac vagal tone innimals susceptible to ventricular fibrillation. Circulation 1989;80;874-880.
  • 10) Akselrod S., Gordon D., Ubel F.A. et al:Power spectrum analysis of heartate fluctuation:a quantitative probe of beat-to-beat cardiovascular control.cience 1981;213;220-222.
  • 11) 森谷敏夫: 運動による自律神経活動の賦活とその生理学的意義. 糖尿病の食事・運動療法(津田謹輔, 林 達也編集), 文光堂, 2007, p162-168.
  • 12) Matumoto T., Miyawaki C., Ue H. et al:Effects of capsaicin-containing yellow curry sauce on sympathetic nervous system activity and diet-induced thermogenesis in lean and obese young women. J Nutr Sci Vitaminol 2000; 46;309-315.
  • 13) Matumoto T., Miyawaki C., Ue H. et al:Comparison of thermogenic sympathetic response to food intake between obese and non-obese young women. Obesity Res 2001;9;78-85.
  • 14) 森谷敏夫, 永井成美: 運動効果を生かす食品. 血圧 2004; 11; 1297-1302.
  • 15) Nagai N., Sakane N., Ueno M.L. et al:The-3826A→G variant of the uncoupling protein-1 gene diminishes postprandial thermogenesis after a high-fat meal in healthy boys. J Clin Endocrinol Metabol 2003;88;5661-5667.
  • 17) Nagai N., Hamada T., Kimura T. et al:Moderate physical exercise increases cardiac autonomic nervous system activity in children with low heart rate variability. Child's Nervous System 2004;20;209-214.
  • 18) 永井成美, 坂根直樹, 森谷敏夫: 朝食欠食, マクロニュートリエントバランスが若年健常者の食後血糖値, 満腹感, エネルギー消費量, 及び自律神経活動へ及ぼす影響. 糖尿病 2005; 48; 761-770.
  • 19) 健康・栄養情報研究会編: 平成15年国民健康・栄養調査報告, 第一出版, 2005, p.320, 付録p.3
  • 21) Matsumoto T., Ushiroyama T., Morimura N. et al:Autonomic nervousystem activity in the late luteal phase of eumenorrheic women with premenstrualymptomatology. J Psychosomat Obst Gynecol 2006;27(3);131-139.
  • 22) 松本珠希, 後山尚久, 木村哲也ら: 自律神経活動から評価した更年期外来における心理療法の臨床効果. 日本更年期医学会雑誌 2007; 15; 135-145.
  • 23) Matumoto T., Miyawaki C., Ue H. et al:Effects of capsaicin-containing yellow curry sauce on sympathetic nervous system activity and diet-induced thermogenesis in lean and obese young women. J Nutr Sci Vitaminol 2000; 46;309-315.
  • 24) Matumoto T., Miyawaki C., Ue H. et al:Comparison of thermogenic sympathetic response to food intake between obese and non-obese young women. Obesity Res 2001;9;78-85.
  • 26) Nagai N., Matsumoto T., Kita H. et al:Interrelationship of the Autonomicervous System Activity and the State and Development of Obesity inapanese School Children. Obesity Res 2003;11;25-32.
  • 27) 永井成美, 森谷敏夫, 坂根直樹ほか: 香辛料辛味成分が小児の食事誘発性熱産生, 満腹感, 及び交感神経活動へ及ぼす影響. 肥満研究 2003; 9; 52-59.
  • 28) Nagai N., Sakane N., Hamada T. et al:The effect of a high-carbohydrateeal on postprandial thermogenesis and sympathetic nervous system activityn boys with a recent onset of obesity. Metabolism 2005;54;430-438.
  • 29) Nagai N.,Sakane N.,Moritani T.:Metabolic responses to high-fat or low-fateals and association with autonomic nervous system activity. J Nutr Sciitaminol 2005;51;355-360.
  • 30) Shihara N.,Yasuda K.,Moritani T.et al:The association between Trp64Argutation of the s3-adrenergic receptor and autonomic nervous system activity. Clin Endocrinol Metab 1999;84;1623-1627.
  • 31) Shihara N., Yasuda K., Moritani T. et al:Cooperative effect of polymorphisms of uncoupling protein 1 and β3-adrenergic receptor genes on autonomic nervous system activity. Int J Obesity 2001;25;761-766.
  • 32) Nagai N., Sakane N., Ueno M.L. et al:The-3826A→G variant of the uncoupling protein-1 gene diminishes postprandial thermogenesis after a high-fat meal in healthy boys. J Clin Endocrinol Metab 2003;88;5661-5667.
  • 33) Shibata M.,Moritani T.,Miyawaki T.et al:Exercise prescription based uponardiac vagal activity for middle-aged obese women.Int J Obesity 2002;26; 1356-1362.
  • 35) Nagai N., Hamada T., Kimura T. et al:Moderate physical exercise increases cardiac autonomic nervous system activity in children with low heart rate variability. Child's Nerv Syst 2004;20;209-214.
  • 36) 浅野勝巳(訳): 栄養と身体作業. 運動生理学 大修館書店; 1985; p.384.
  • 37) American College of Sports Medicine:Position stand on the recommended quantity and quality of exercise for developing and maintaining cardiorespiratory muscular fitness in healthy adults. Med Sci Sports Exerc 1990;22;265-274.
  • 38) Cotman C.W.,Berchtold N.C.:Exercise:a behavioral intervention to enhancerain health and plasticity. Trends Neurosci 25;295-301;2002.
  • 39) Cotman C.W.,Engesser-Cesar C.:Exercise enhances and protects brain function.xerc Sport Sci Rev 30;75-79;2002.
  • 40) Pedersen B.K., Fischer C.P.:Beneficial health effects of exercise-the role ofL-6 as a myokine. Trends Pharmacol Sci 2007;28(4);152-156.
  • 44) 浜田 拓, 林 達也, 森谷敏夫: 筋電気刺激(EMS)を利用した生活習慣病改善の可能性. BME 2003;16;35-41.

第4章 褐色脂肪と肥満・メタボリックシンドローム: 実験動物からヒトへ

P.78 掲載の参考文献

  • 4) Nedergaard J., Golozoubova V., Matthias A. et al:UCP1:the only proteinble to mediate adaptive non-shivering thermogenesis and metabolic inefficiency.iochim Biophys Acta 2001;1504(1):82-106.
  • 5) Garlid K.D., Jaburek M., Jezek P.:The mechanism of proton transportediated by mitochondrial uncoupling proteins.FEBS Lett 1998;438(1-2):104.
  • 7) Puigserver P.,Wu Z.,Park C.W.et al:A cold-inducible coactivator of nucleareceptors linked to adaptive thermogenesis. Cell 1998;92(6):829-39.
  • 13) Thomas S.A.,Palmiter R.D.:Thermoregulatory and metabolic phenotypes ofice lacking noradrenaline and adrenaline. Nature 1997;387(6628):94-7.
  • 15) Jimenez M., Leger B., Canola K. et al:Beta(1)/beta(2)/beta(3)-adrenoceptornockout mice are obese and cold-sensitive but have normal lipolyticesponses to fasting. FEBS Lett 2002;530(1-3):37-40.
  • 16) Enerbeck S., Jacobsson A., Simpson E.M. et al:Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 1997;387(6628):90-4.
  • 17) Cannon B., Houstek J., Nedergaard J.:Brown adipose tissue. More than anffector of thermogenesis?Ann N Y Acad Sci 1998;856((null)):171-87.
  • 23) Ishigaki Y.,Katagiri H.,Yamada T.et al:Dissipating excess energy stored inhe liver is a potential treatment strategy for diabetes associated with obesity.iabetes 2005;54(2):322-32.
  • 24) Nagase I.,Yoshida T.,Kumamoto K.et al:Expression of uncoupling proteinn skeletal muscle and white fat of obese mice treated with thermogenic beta 3-adrenergic agonist. J Clin Invest 1996;97(12):2898-904.
  • 25) Umekawa T., Yoshida T., Sakane N. et al:Anti-obesity and anti-diabeticffects of CL316,243, a highly specific beta 3-adrenoceptor agonist,in Otsukaong-Evans Tokushima Fatty rats:induction of uncoupling protein andctivation of glucose transporter 4 in white fat. Eur J Endocrinol 1997; 136(4):429-37.
  • 26) Inokuma K., Okamatsu-Ogura Y., Omachi A. et al:Indispensable role ofitochondrial UCP1 for antiobesity effect of beta3-adrenergic stimulation.m J Physiol Endocrinol Metab 2006;290(5):E1014-21.
  • 27) Okamatsu-Ogura Y., Uozumi A., Toda C. et al:Uncoupling protein 1 contributes to fat-reducing effect of leptin. Obes Res Clin. Prac 2007;1:233-41.
  • 31) Inokuma K., Ogura-Okamatsu Y., Toda C. et al:Uncoupling protein 1 isecessary for norepinephrine-induced glucose utilization in brown adiposeissue. Diabetes 2005;54(5):1385-91.
  • 32) Cassard A.M., Bouillaud F., Mattei M.G. et al:Human uncoupling proteinene:structure,comparison with rat gene,and assignment to the long arm ofhromosome 4. J Cell Biochem 1990;43(3):255-64.
  • 35) Lean M.E., James W.P., Jennings G. et al:Brown adipose tissue in patientsith phaeochromocytoma. Int J Obes 1986;10(3):219-27.
  • 36) Cassard A.M., Bouillaud F., Mattei M.G. et al:Human uncoupling proteinene:structure,comparison with rat gene,and assignment to the long arm ofhromosome 4. J Cell Biochem 1990;43(3):255-64.
  • 37) Garruti G., Ricquier D.:Analysis of uncoupling protein and its mRNA indipose tissue deposits of adult humans.Int J Obes Relat Metab Disord 1992; 16(5):383-90.
  • 38) Kortelainen M.L.,Pelletier G.,Ricquier D.et al:Immunohistochemical detectionf human brown adipose tissue uncoupling protein in an autopsy series. Histochem Cytochem 1993;41(5):759-64.
  • 39) Sasaki N., Uchida E., Niiyama M. et al:Anti-obesity effects of selectivegonists to beta-adrenergic receptor in dogs. II. Recruitment of thermogenicrown adipocytes and reduction of adiposity after chronic treatment with aeta3-adrenergic agonist. J Vet Med Sci 1998;60:465-9.
  • 40) Omachi A.,Ishioka K.,Uozumi A et al:Beta3-adrenoceptor agonist AJ-9677educes body fat in obese beagles. Res Vet Sci 2007;83:5-11.
  • 41) Omachi A., Matsushita Y., Kimura K. et al:Role of uncoupling protein 1 in the anti-obesity effect of beta3-adrenergic agonist in the dog. Res Vet Sci 2007 in press.
  • 42) Engel H., Steinert H., Buck A. et al:Whole-body PET:physiological andrtifactual fluorodeoxyglucose accumulations.J Nucl Med 1996;37(3):441-6.
  • 43) Barrington S.F., Maisey M.N. et al:Skeletal muscle uptake of fluorine-18FDG:effect of oral diazepam. J Nucl Med 1996;37(7):1127-9.
  • 45) Yeung H.W., Grewal R.K., Gonen M.et al:Patterns of (18)F-FDG uptake indipose tissue and muscle:a potential source of false-positives for PET. Jucl Med 2003;44(11):1789-96.
  • 46) Fukuchi K., Tatsumi M., Ishida Y. et al:Radionuclide imaging metabolicctivity of brown adipose tissue in a patient with pheochromocytoma. Explin Endocrinol Diabetes 2004;112(10):601-3.
  • 48) Almind K., Manieri M., Sivitz W.I. et al:Ectopic brown adipose tissue inuscle provides a mechanism for differences in risk of metabolic syndrome inice. Proc Natl Acad Sci USA 2007;104(7):2366-71.

第II編 エネルギー・脂質代謝調節の分子機構

P.105 掲載の参考文献

  • 2) Randle P.J., Garland P.B.,Hales C.N.et al:The glucose fatty-acid cycle.Itsole in insulin sensitivity and the metabolic disturbances of diabetes mellitus.ancet 1963;1;785-789.
  • 5) 江崎 治, 亀井康富:サルコペニアおよび廃用性萎縮への研究戦略と目標. 日本医師会雑誌. 2004;132;977-979.
  • 6) Drenick E.J.:Clinical disorders of fluid and electrolyte metabolism. New York:McGraw Hill, 1980,p1481-1501.
  • 7) Hood V.L.:Fluids and electrolytes. Philadelphia:WS Sauders, 1986, p712
  • 8) Nilsson L.H.:Liver glycogen content in man in the postabsorptive state.cand J Clin Lab Invest 1973;32;317-323.
  • 9) アリソンS.P.:医師のための栄養学. ダノン健康・栄養普及協会, 1999, p 83-85.
  • 10) Nisoli E.,Tonello C.,Cardile A.et al:Calorie restriction promotes mitochondrialiogenesis by inducing the expression of eNOS. Science 2005;310;314317.
  • 12) Garrow J.S., Webster J.D.:Effects on weight and metabolic rate of obeseomen of a 3.4 MJ (800kcal) diet. Lancet 1989;1;1429-1431.
  • 13) Minghelli G., Schutz Y., Charbonnier A. et al:Twenty-four-hour energy expenditure and basal metabolic rate measured in a whole-body indirect calorimeter in Gambian men. Am J Clin Nutr 1990;51;563-570.
  • 17) Kamei Y., Mizukami J., Miura S. et al:A forkhead transcription factorKHR up-regulates lipoprotein lipase expression in skeletal muscle. FEBSett 2003;536;232-236.
  • 19) Bizeau M.E., MacLean P.S., Johnson G.C. et al:Skeletal muscle sterol regulatory element binding protein-1c decreases with food deprivation and increases with feeding in rats. J Nutr 2003;133;1781-1792.
  • 22) 江崎 治, 三浦進司:メタボリックシンドロームにおける運動療法の分子基盤. 実験医学 2007;25;(増刊) 2441-2447.
  • 26) van Loon L.J., Greenhaff P.L., Constantin-Teodosiu D. et al:The effects ofncreasing exercise intensity on muscle fuel utilisation in humans. J Physiol 2001;536;295-304.
  • 27) Starritt E.C., Howlett R.A., Heigenhauser G.J. et al:Sensitivity of CPT I toalonyl-CoA in trained and untrained human skeletal muscle.Am J Physiolndocrinol Metab 2000;278;E462-E468.
  • 30) Ohkawara K.,Tanaka S.,Miyachi M.et al:A dose-response relation betweenerobic exercise and visceral fat reduction:systematic review of clinicalrials. Int J Obes (Lond)2007;31(12);1786-1797.
  • 32) Miura S., Kamei Y., Ezaki O.:AMP-Activated Protein Kinase in Skeletal Muscle Is Required for a Reduction of Fat Mass by Exercise Training. Diabetes 2006;55 Suppl;A241.
  • 33) 江崎 治, 三浦進司:AMPキナーゼ. Clinical Neuroscience 2006;24;929-931.
  • 34) Hickner R.C., Racette S.B., Binder E.F. et al:Suppression of whole body and regional lipolysis by insulin:effects of obesity and exercise. J Clin Endocrinol Metab 1990;84:3886-3895.
  • 37) Wende A.R., Schaeffer P.J., Parker G.J. et al:A role for the transcriptionaloactivator PGC-l alpha in muscle refueling. J Biol Chem 2007;282;36642-36651.
  • 41) Racette S.B.,Weiss E.P.,Villareal D.T.et al:One year of caloric restriction inumans:feasibility and effects on body composition and abdominal adiposeissue. J Gerontol A Biol Sci Med Sci 2006;61;943-950.J of Gerontology 2006, 61A;943-950
  • 43) Tokunaga K., Matsuzawa Y., Kotani K. et al:Ideal body weight estimatedrom the body mass index with the lowest morbidity.Int J Obes 1991;15;1-5.
  • 44) Tsugane S., Sasaki S., Tsubono Y.:Under-and overweight impact onortality among middle-aged Japanese men and women:a 10-y follow-up ofPHC study cohort I. Int J Obes Relat Metab Disord 2002;26;529-537.
  • 45) Takata Y.,Ansai T., Soh I. et al:Association between body mass index andortality in an 80-year-old population. J Am Geriatr Soc 2007;55;913-917.
  • 46) 厚生労働省策定:日本人の食事摂取基準2005年版, 第一出版, p 29.

第6章 AMPキナーゼによる生体エネルギー代謝調節機構

P.124 掲載の参考文献

  • 1) Hardie D.G., Carling D., Carlson M.:The AMP-activated/SNF1 proteininase subfamily:metabolic sensors of the eukaryotic cell? Annu Rev Biochem 1998;67;821-855.
  • 3) Dolinsky V.W., Dyck J.R.:Role of AMP-activated protein kinase in healthynd diseased hearts.Am.J.Physiol.Heart Circ.Physiol 2006;291;2557-2569.
  • 4) Kahn B.B., Alquier. T, Carling D.:Hardie DG.:AMP-activated proteininase:ancient energy gauge provides clues to modern understanding ofetabolism. Cell Metab 2005;1;15-35.
  • 5) Suzuki A., Okamoto S., Lee S. et al:Leptin stimulates fatty acid oxidation and PPARα gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the α2 form of AMP-activated protein kinase. Mol Cell Biol 2007;27;4317-4327.
  • 6) Alessi D.R., Sakamoto K., Bayascas J.R.:LKB 1-dependent signaling pathways.nnu Rev Biochem 2006;75;137-163.
  • 8) Hawley S.A., Boudeau J., Reid J.L. et al:Complexes between the LKB 1 tumor suppressor, STRAD alpha/beta and MO 25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2003;2;28.
  • 10) Hamilton S.R., O'Donnell J.B. Jr, Hammet A. et al:AMP-activated proteininase kinase:detection with recombinant AMPK alpha 1 subunit. Biochemiophys Res Commun 2002;293;892-898.
  • 11) Hawley S.A., Pan D.A., Mustard K.J. et al:Calmodulin-dependent proteininase kinase-beta is an alternative upstream kinase for AMP-activatedrotein kinase. Cell Metab 2005;2;9-19.
  • 12) Woods A., Dickerson K.,Heath R. et al:Ca??/calmodulin-dependent proteininase kinase-beta acts upstream of AMP-activated protein kinase in mammalianells. Cell Metab 2005;2;21-33.
  • 13) Hurley R.L., Anderson K.A., Franzone J.M. et al:The Ca2+/calmodulindependent protein kinase kinases are AMP-activated protein kinase kinases. Trends Biochem Sci 2006;31;13-16.
  • 14) Momcilovic, M., Hong S.P., Carlson M.:Mammalian TAK1 activates Snf1rotein kinase in yeast and phosphorylates AMP-activated protein kinase initro. J Biol Chem 2006;281;25336-25343.
  • 15) Shibuya H., Yamaguchi K., Shirakabe K. et al:TAB1:an activator of theAK1 MAPKKK in TGF-beta signal transduction. Science 1996;272;1791182.
  • 16) Mu J., Brozinick J.T. Jr, Valladares O. et al:A role for AMP-activatedrotein kinase in contraction-and hypoxia-regulated glucose transport inkeletal muscle. Mol Cell 2001;7;1085-1094.
  • 17) Fujii N., Hirshman M.F., Kane E.M. et al:AMP-activated protein kinaseα2 activity is not essential for contraction-and hyperosmolarity-induced glucose transport in skeletal muscle. J Biol Chem 2005;280;39033-39041.
  • 19) Yamauchi T., Kamon J., Ito Y. et al:Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2007;13;332-339.
  • 22) Jager S., Handschin C., St.-Pierre J. et al:AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc Natl Acad Sci 2007;104;12017-12022.
  • 23) Morino K, Petersen K.F., Shulman G.I.:Molecular mechanisms of insulinesistance in humans and their potential links with mitochondrial dysfunction.iabetes 2006;55 Suppl 2;S9-S15.
  • 28) Minokoshi Y., Kim Y.-B., Odile D. et al:Leptin stimulates fatty acid oxidationy activation of AMP-activated protein kinase. Nature 2002;415;339343.
  • 29) Minokoshi Y., Alquier T., Furukawa N. et al:AMP-kinase regulates foodntake by responding to hormonal and nutrient signals in the hypothalamus.ature 2004;428;569-574.
  • 30) Minokoshi Y., Haque M.S., Shimazu T.:Microinjection of leptin into theentromedial hypothalamus increases glucose uptake in peripheral tissues inats. Diabetes 1999;48;287-291.
  • 31) Haque M.S.,Minokoshi Y.,Hamai M.et al:Role of the sympathetic nervousystem and insulin in enhancing glucose uptake in peripheral tissues afterntrahypothalamic injection of leptin in rats. Diabetes 1999;48;1706-1712.
  • 33) Oral E.A.,Simha V.,Ruiz E.et al:Leptin-replacement therapy for lipodystrophy. Engl J Med 2002;346;570-578.
  • 34) Ebihara K., Masuzaki H.,Nakao K.:Long-term leptin-replacement therapyor lipoatrophic diabetes. N Engl J Med 2004;19;127-129.
  • 35) Tanaka T., Hidaka S., Masuzaki H. et al:Skeletal muscle AMP-activatedrotein kinase phosphorylation parallels metabolic phenotype in leptin transgenicice under dietary modification. Diabetes 2005;54;2365-2374.
  • 36) Tanaka T., Masuzaki H., Yasue S. et al:Central melanocortin signalingestores skeletal muscle AMP-activated protein kinase phosphorylation inice fed a high-fat diet. Cell Metab 2007;5;395-402.
  • 37) Kim E.K., Miller I., Aja S. et al:C75, a Fatty Acid Synthase Inhibitor,educes Food Intake via Hypothalamic AMP-activated Protein Kinase. Jiol Chem 2004;276;19970-19976.
  • 38) Kim M., Park J.Y, Namkoong C. et al:Anti-obesity effects of a-lipoic acidediated by suppression of hypothalamic AMP-activated protein kinase.Nated 2004;10;727-733.
  • 44) Gao S., Kinsig K.P., Aja S. et al:Leptin activates hypothalamic acetyl-CoAarboxylase to inhibit food intake. Proc Natl Acad Sic 2007;104;1735817363.
  • 46) Kubota N.,Yano W.,Kubota T.et al:Adiponectin stimulates AMP-activatedrotein kinase in the hypothalams and increases food intake. Cell Metab 2007;6;1-14.

第7章 脂質代謝関連遺伝子の転写制御と肥満

P.137 掲載の参考文献

  • 1) Sato R., Imanaka T., Takatsuki A. et al:Degradation of newly synthesized apolipoprotein B-100 in a pre-Golgi compartment. J Biol Chem 1990;265; 11880-11884.
  • 2) Du E.Z., Fleming J.F., Wang S-L. et al:Translation-arrested apolipoprotein ecades proteasome degradation via a sterol-sensitive block in ubiquitinonjugation. J Biol Chem 1999;274;1856-1862.
  • 3) Wetterau J.R., Gregg R.E. et al:An MTP inhibitor that normalizes atherogenicipoprotein levelos in WHHL rabbits. Science 1998;282;751-754.
  • 4) Hayhurst G.P., Lee Y-H. et al:Hepatocyte nuclear factor 4a (Nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipidomeostasis. Mol Cell Biol 2001;21;1393-4103.
  • 5) Hertz R., Mangeheim J., Berman I. et al:Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4α. Nature 1998;392;512-516.
  • 8) Yamamoto T.,Shimano H.et al:SREBP-1 Interacts with hepatocyte nuclearactor-4a and interferes with PGC-1 recruitment to suppress hepaticluconeogenic genes. J Biol Chem 2004;279;12027-12035.
  • 12) Davis R.A., Miyake J.H. et al:Regulation of cholesterol-7-hydroxylase:AREly missing a SHP. J Lipid Res 2002;43;533-543.
  • 14) Iwaki M., Matsuda M. et al:Induction of adiponectin, a fat-derivedntidiabetic and antiatherogenic factor,by nuclear receptors.Diabetes 2003; 52;1655-1663.
  • 15) Shimomura I.,Matsuda M. et al:Decreased IRS-2 and increased SREBP-1cead to mixed insulin resistance and sensitivity in livers of lipodystrophic andb/ob Mice. Mol Cell 2000;6;77-86.

第8章 胆汁酸によるエネルギー代謝調節機構の分子メカニズムと臨床応用

P.170 掲載の参考文献

  • 1) Stamler J.,Vaccaro O.,Neaton J.D.et al:Diabetes,other risk factors,and 12-r cardiovascular mortality for men screened in the Multiple Risk Factorntervention Trial. Diabetes Care 1993;16;434-44.
  • 2) Sone H., Mizuno S., Fujii H. et al:Is the diagnosis of metabolic syndromeseful for predicting cardiovascular disease in asian diabetic patients?Analysisrom the Japan Diabetes Complications Study. Diabetes Care 2005;28; 1463-71.
  • 4) Javitt N.B.:Bile acid synthesis from cholesterol:regulatory and auxiliaryathways. Faseb J 1994;8;1308-11.
  • 5) Axelson M., Sjovall J.:Potential bile acid precursors in plasma--possiblendicators of biosynthetic pathways to cholic and chenodeoxycholic acids inan. J Steroid Biochem 1990;36;631-40.
  • 6) Ishibashi S., Schwarz M., Frykman P.K. et al:Disruption of cholesterol 7alpha-hydroxylase gene in mice. I. Postnatal lethality reversed by bile acidnd vitamin supplementation. J Biol Chem 1996;271;18017-23.
  • 8) Chiang J.Y., Stroup D.:Identification and characterization of a putative bilecid-responsive element in cholesterol 7 alpha-hydroxylase gene promoter.Jiol Chem 1994;269;17502-7.
  • 9) Stroup D., Crestani M., Chiang J.Y.:Orphan receptors chicken ovalbuminpstream promoter transcription factorII(COUP-TFII)and retinoid Xeceptor(RXR)activate and bind the rat cholesterol 7alpha-hydroxylase geneCYP7A). J Biol Chem 1997;272;9833-9.
  • 10) Forman B.M.,Goode E.,Chen J.et al:Identification of a nuclear receptor thats activated by farnesol metabolites. Cell 1995;81;687-93.
  • 11) Makishima M., Okamoto A.Y., Repa J.J. et al:Identification of a nucleareceptor for bile acids. Science 1999;284;1362-5.
  • 12) Parks D.J., Blanchard S.G.,Bledsoe RK.et al:Bile acids:natural ligands forn orphan nuclear receptor. Science 1999;284;1365-8.
  • 13) Wang H.,Chen J.,Hollister K.et al:Endogenous bile acids are ligands for theuclear receptor FXR/BAR. Mol Cell 1999;3;543-53.
  • 14) Lu T.T.,Makishima M.,Repa J.J.et al:Molecular basis for feedback regulationf bile acid synthesis by nuclear receptors. Mol Cell 2000;6;507-15.
  • 16) Wang L., Lee Y.K., Bundman D. et al:Redundant pathways for negativeeedback regulation of bile acid production. Dev Cell 2002;2;721-31.
  • 17) Holt J.A., Luo G., Billin A.N. et al:Definition of a novel growth factordependent signal cascade for the suppression of bile acid biosynthesis.Genesev 2003;17;1581-91.
  • 19) Davis R.A., Miyake J.H., Hui T.Y. et al:Regulation of cholesterol-7alphahydroxylase:BAREly missing a SHP. J Lipid Res 2002;43;533-43.
  • 20) Miyake J.H., Wang S.L., Davis R.A.:Bile acid induction of cytokine expressiony macrophages correlates with repression of hepatic cholesterol 7alphahydroxylase. J Biol Chem 2000;275;21805-8.
  • 22) Gupta S.,Stravitz R.T.,Dent P.et al:Down-regulation of cholesterol 7alphahydroxylase(CYP7A1)gene expression by bile acids in primary rat hepatocytess mediated by the c-Jun N-terminal kinase pathway.J Biol Chem 2001;276;15816-22.
  • 25) Lee F.Y.,Lee H.,Hubbert M.L.et al:FXR,a multipurpose nuclear receptor.rends Biochem Sci 2006;31;572-80.
  • 26) Houten S.M., Watanabe M., Auwerx J.:Endocrine functions of bile acids.mbo J 2006;25;1419-25.
  • 29) Grober J., Zaghini I., Fujii H. et al:Identification of a bile acid-responsivelement in the human ileal bile acid-binding protein gene.Involvement of thearnesoid X receptor/9-cis-retinoic acid receptor heterodimer. J Biol Chem 1999;274;29749-54.
  • 31) Qiao L., Han S.I., Fang Y. et al:Bile acid regulation of C/EBPbeta, CREB,nd c-Jun function, via the extracellular signal-regulated kinase and c-JunH2-terminal kinase pathways, modulates the apoptotic response of hepatocytes.ol Cell Biol 2003;23;3052-66.
  • 32) Kawamata Y., Fujii R., Hosoya M. et al:A G protein-coupled receptoresponsive to bile acids. J Biol Chem 2003;278;9435-40.
  • 33) Maruyama T.,Miyamoto Y.,Nakamura T.et al:Identification of membranetype receptor for bile acids (M-BAR). Biochem Biophys Res Commun 2002;298;714-9.
  • 34) Ho K.J.:Circadian distribution of bile acid in the enterohepatic circulatoryystem in hamsters. J Lipid Res 1976;17;600-4.
  • 35) Engelking L.R., Dasher C.A., Hirschowitz B.I.:Within-day fluctuations inerum bile-acid concentrations among normal control subjects and patientsith hepatic disease. Am J Clin Pathol 1980;73;196-201.
  • 36) Everson G.T.:Steady-state kinetics of serum bile acids in healthy human subjects:single and dual isotope techniques using stable isotopes and mass spectrometry. J Lipid Res 1987;28;238-52.
  • 39) Sinal C.J., Tohkin M., Miyata M. et al:Targeted disruption of the nucleareceptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 2000;102; 731-44.ile acid receptor. J Biol Chem 2001;276;28857-65. 731-44.
  • 40) Miller N.E., Nestel P.J.:Triglyceride-lowering effect of chenodeoxycholiccid in patients with endogenous hypertriglyceridaemia. Lancet 1974;2;92931.
  • 41) Angelin B., Einarsson K., Hellstrom K. et al:Effects of cholestyramine andhenodeoxycholic acid on the metabolism of endogenous triglyceride inyperlipoproteinemia. J Lipid Res 1978;19;1017-24.
  • 42) Bateson M.C., Maclean D., Evans J.R. et al:Chenodeoxycholic acid therapyor hypertriglyceridaemia in men. Br J Clin Pharmacol 1978;5;249-54.
  • 43) Carulli N., Ponz de Leon M., Podda M. et al:Chenodeoxycholic acid andrsodeoxycholic acid effects in endogenous hypertriglyceridemias. Aontrolled double-blind trial. J Clin Pharmacol 1981;21;436-42.
  • 45) Repa J.J.,Liang G.,Ou J.et al:Regulation of mouse sterol regulatory elementbinding protein-1c gene(SREBP-1c)by oxysterol receptors,LXRalpha andXRbeta. Genes Dev 2000;14;2819-30.
  • 48) Claudel T.,Inoue Y.,Barbier O.et al:Farnesoid X receptor agonists suppressepatic apolipoprotein CIII expression. Gastroenterology 2003;125;544-55.
  • 51) Sirvent A.,Claudel T.,Martin G.et al:The farnesoid X receptor induces veryow density lipoprotein receptor gene expression. FEBS Lett 2004;566;1737.
  • 56) Baxter J.D.,Webb P.,Grover G.et al:Selective activation of thyroid hormoneignaling pathways by GC-1:a new approach to controlling cholesterol andody weight. Trends Endocrinol Metab 2004;15;154-7.
  • 58) 梶山梧朗ほか: 新規陰イオン交換樹脂MCI-196のヒト胆汁脂質に与える影響について. 臨床医薬 1996; 12; 1349-59.
  • 59) Suzuki T., Oba K., Futami S. et al:Blood glucose-lowering activity ofolestimide in patients with type 2 diabetes and hypercholesterolemia:a casecontrol study comparing colestimide with acarbose.J Nippon Med Sch 2006; 73;277-84.
  • 60) Yamakawa T., Takano T., Utsunomiya H. et al:Effect of colestimide therapyor glycemic control in type 2 diabetes mellitus with hypercholesterolemia.ndocr J 2007;54;53-8.
  • 61) Zieve F.J., Kalin M.F., Schwartz S.L. et al:Results of the glucose-loweringffect of WelChol study(GLOWS):a randomized, double-blind, placebocontrolled pilot study evaluating the effect of colesevelam hydrochloride onlycemic control in subjects with type 2 diabetes. Clin Ther 2007;29;74-83.
  • 63) Borgius L.J., Steffensen K.R., Gustafsson J.A. et al:Glucocorticoid signalings perturbed by the atypical orphan receptor and corepressor SHP. J Biolhem 2002;277;49761-6.
  • 69) Duran-Sandoval D., Mautino G., Martin G. et al:Glucose regulates thexpression of the farnesoid X receptor in liver. Diabetes 2004;53;890-8.
  • 71) Cariou B., van Harmelen K., Duran-Sandoval D. et al:The farnesoid Xeceptor modulates adiposity and peripheral insulin sensitivity in mice.J Biolhem 2006;281;11039-49.
  • 75) Yu C.,Wang F.,Kan M.et al:Elevated cholesterol metabolism and bile acidynthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J Biolhem 2000;275;15482-9.
  • 76) Lundasen T., Galman C., Angelin B. et al:Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med 2006;260;530-6.
  • 77) Tomlinson E.,Fu L.,John L.et al:Transgenic mice expressing human fibroblastrowth factor-19 display increased metabolic rate and decreaseddiposity. Endocrinology 2002;143;1741-7.
  • 78) Fu L., John L.M., Adams S.H. et al:Fibroblast growth factor 19 increasesetabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 2004;145;2594-603.
  • 79) Huang X.,Yang C.,Luo Y.et al:FGFR4 prevents hyperlipidemia and insulinesistance but underlies high-fat diet induced fatty liver. Diabetes 2007;56; 2501-10.
  • 80) Brown M.S., Goldstein J.L.:A receptor-mediated pathway for cholesterolomeostasis. Science 1986;232;34-47.

第III編 肥満病態と食品・医薬品による予防・治療

P.194 掲載の参考文献

  • 3) Masuzaki H., Ogawa Y., Sagawa N. et al:Nonadipose tissue production ofeptin:leptin as a novel placenta-derived hormone in humans.Nat Med 1997; 3;1029-1033.
  • 4) Bado A., Levasseur S., Attoub S. et al:The stomach is a source of leptin.ature 1998;394;790-793.
  • 5) Smith-Kirwin S.M., O'Connor D.M., De Johnston J. et al:Leptin expression in human mammary epithelial cells and breast milk. J Clin Endocrinol Metab 1998;83;1810-1813.
  • 6) Aoki N., Kawamura M., Matsuda T.:Lactation-dependent down regulationf leptin production in mouse mammary gland. Biochim Biophys Acta 1999; 1427;298-306.
  • 8) Bjorbaek C., Kahn B. B.:Leptin signaling in the central nervous system andhe periphery. Recent Prog Horm Res 2004;59;305-331.
  • 12) Clement K., Vaisse C., Lahlou N. et al:A mutation in the human leptineceptor gene causes obesity and pituitary dysfunction.Nature 1998;392;398401.
  • 13) Ogawa Y.,Masuzaki H.,Hosoda K.et al:Increased glucose metabolism andnsulin sensitivity in transgenic skinny mice overexpressing leptin. Diabetes 1999;48;1822-1829.
  • 16) Ebihara K., Ogawa Y., Masuzaki H. et al:Transgenic overexpression ofeptin rescues insulin resistance and diabetes in a mouse model of lipoatrophiciabetes. Diabetes 2001;50;1440-1448.
  • 18) Scherer P. E., Williams S., Fogliano M. et al:A novel serum protein similaro C1q, produced exclusively in adipocytes. J Biol Chem 1995;270;2674626749.
  • 20) Nakano Y., Tobe T., Choi-Miura N.H. et al:Isolation and characterizationf GBP28, a novel gelatin-binding protein purified from human plasma. Jiochem (Tokyo)1996;120;803-812.
  • 21) Shapiro L., Scherer P. E.:The crystal structure of a complement-1q familyrotein suggests an evolutionary link to tumor necrosis factor.Curr Biol 1998; 8;335-338.
  • 22) Yokota T.,Oritani K.,Takahashi I.et al:Adiponectin,a new member of theamily of soluble defense collagens, negatively regulates the growth ofyelomonocytic progenitors and the functions of macrophages. Blood 2000; 96;1723-1732.
  • 25) Ryo M., Nakamura T., Kihara S. et al:Adiponectin as a biomarker of theetabolic syndrome. Circ J 2004;68;975-981.
  • 28) Furukawa S., Fujita T., Shimabukuro M. et al:Increased oxidative stress inbesity and its impact on metabolic syndrome. J Clin Invest 2004;114;17521761.
  • 29) Pischon T., Girman C. J., Rifai N. et al:Association between dietary factors and plasma adiponectin concentrations in men. Am J Clin Nutr 2005;81;780-786.
  • 31) Furuhashi M.,Ura N.,Higashiura K.et al:Blockade of the renin-angiotensinystem increases adiponectin concentrations in patients with essential hypertension.ypertension 2003;42;76-81.
  • 35) Nagao K., Inoue N., Wang Y. M. et al:Conjugated linoleic acid enhanceslasma adiponectin level and alleviates hyperinsulinemia and hypertension inucker diabetic fatty (fa/fa) rats. Biochem Biophys Res Commun 2003;310;562-566.
  • 36) Iwaki M., Matsuda M., Maeda N. et al:Induction of adiponectin, a fatderived antidiabetic and antiatherogenic factor, by nuclear receptors.iabetes 2003;52;1655-1663.
  • 37) Hara K., Boutin P., Mori Y. et al:Genetic variation in the gene encodingdiponectin is associated with an increased risk of type 2 diabetes in theapanese population. Diabetes 2002;51;536-540.
  • 38) Kondo H., Shimomura I., Matsukawa Y. et al:Association of adiponectinutation with type 2 diabetes:a candidate gene for the insulin resistanceyndrome. Diabetes 2002;51;2325-2328.
  • 39) Stumvoll M.,Tschritter O.,Fritsche A.et al:Association of the T-G polymorphismn adiponectin (exon 2)with obesity and insulin sensitivity:interactionith family history of type 2 diabetes. Diabetes 2002;51;37-41.
  • 40) Menzaghi C., Ercolino T., Di Paola R. et al:A haplotype at the adiponectinocus is associated with obesity and other features of the insulin resistanceyndrome. Diabetes 2002;51;2306-2312.
  • 41) Woo J. G., Dolan L. M., Deka R. et al:Interactions between noncontiguousaplotypes in the adiponectin gene ACDC are associated with plasmadiponectin. Diabetes 2006;55;523-529.
  • 43) Hug C.,Wang J.,Ahmad N.S.et al:T-cadherin is a receptor for hexamericnd high-molecular-weight forms of Acrp30/adiponectin.Proc Natl Acad SciSA 2004;101;10308-10313.
  • 44) Yamauchi T.,Kamon J.,Minokoshi Y. et al:Adiponectin stimulates glucosetilization and fatty-acid oxidation by activating AMP-activated proteininase. Nat Med 2002;8;1288-1295.
  • 45) Fruebis J., Tsao T. S., Javorschi S. et al:Proteolytic cleavage product of 30kDa adipocyte complement-related protein increases fatty acid oxidation inuscle and causes weight loss in mice. Proc Natl Acad Sci USA 2001;98; 2005-2010.
  • 46) Tsuchida A., Yamauchi T., Ito Y. et al:Insulin/Foxo1 pathway regulatesxpression levels of adiponectin receptors and adiponectin sensitivity. J Biolhem 2004;279;30817-30822.
  • 47) Tsuchida A., Yamauchi T., Takekawa S. et al:Peroxisome proliferatoractivated receptor (PPAR)alpha activation increases adiponectin receptorsnd reduces obesity-related inflammation in adipose tissue:comparison ofctivation of PPARalpha, PPARgamma, and their combination. Diabetes 2005;54;3358-3370.
  • 51) Skurk T., Hauner H.:Obesity and impaired fibrinolysis:role of adiposeroduction of plasminogen activator inhibitor-1. Int J Obes Relat Metabisord 2004;28;1357-1364.
  • 53) Ishii M., Yoshioka Y., Ishida W. et al:Liver fat content measured by magneticesonance spectroscopy at 3.0 tesla independently correlates with plasminogenctivator inhibitor-1 and body mass index in type 2 diabetic subjects.ohoku J Exp Med 2005;206;23-30.
  • 55) Samal B.,Sun Y.,Stearns G.et al:Cloning and characterization of the cDNAncoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol 1994;14;1431-1437.
  • 56) Tanaka M.,Nozaki M.,Fukuhara A.et al:Visfatin is released from 3T3-L1dipocytes via a non-classical pathway.Biochem Biophys Res Commun 2007;359;194-201.
  • 57) Revollo J.R.,Grimm A.A.,Imai S.:The NAD biosynthesis pathway mediatedy nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalianells. J Biol Chem 2004;279;50754-50763.
  • 59) Curat C. A., Wegner V., Sengenes C. et al:Macrophages in human visceraldipose tissue:increased accumulation in obesity and a source of resistin andisfatin. Diabetologia 2006;49;744-747.
  • 60) Berndt J.,Kloting N.,Kralisch S.et al:Plasma visfatin concentrations and fatepot-specific mRNA expression in humans. Diabetes 2005;54;2911-2916.
  • 61) Haider D.G.,Holzer G.,Schaller G.et al:The adipokine visfatin is markedlylevated in obese children. J Pediatr Gastroenterol Nutr 2006;43;548-549.
  • 62) Haider D. G., Pleiner J., Francesconi M. et al:Exercise training lowerslasma visfatin concentrations in patients with type 1 diabetes.J Clin Endocrinoletab 2006;91;4702-4704.
  • 63) Chen M.P.,Chung F.M.,Chang D.M.et al:Elevated plasma level of visfatin/re-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. Clin Endocrinol Metab 2006;91;295-299.
  • 68) Carswell E. A., Old L. J., Kassel R. L. et al:An endotoxin-induced serumactor that causes necrosis of tumors.Proc Natl Acad Sci USA 1975;72;36663670.
  • 69) Hotamisligil G. S., Shargill N. S.Spiegelman B. M.:Adipose expression ofumor necrosis factor-alpha:direct role in obesity-linked insulin resistance.cience 1993;259;87-91.
  • 73) Ueki K.,Kondo T.,Kahn C. R.:Suppressor of cytokine signaling 1 (SOCS-1)nd SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylationf insulin receptor substrate proteins by discrete mechanisms. Molell Biol 2004;24;5434-5446.
  • 76) Banerjee R. R., Lazar M.A.:Dimerization of resistin and resistin-like moleculess determined by a single cysteine. J Biol Chem 2001;276;25970-25973.
  • 80) Ghosh S., Singh A. K., Aruna B. et al:The genomic organization of mouseesistin reveals major differences from the human resistin:functional implications.ene 2003;305;27-34.
  • 84) McTernan C.L.,McTernan P.G.,Harte A.L.et al:Resistin,central obesity,nd type 2 diabetes. Lancet 2002;359;46-47.
  • 85) Otto C., Otto B., Goke B. et al:Increase in adiponectin levels during pioglitazoneherapy in relation to glucose control, insulin resistance as well ashrelin and resistin levels. J Endocrinol Invest 2006;29;231-236.
  • 87) Kanda H., Tateya S., Tamori Y. et al:MCP-1 contributes to macrophagenfiltration into adipose tissue, insulin resistance, and hepatic steatosis inbesity. J Clin Invest 2006;116;1494-1505.
  • 89) Wellen K. E., Hotamisligil G. S.:Inflammation, stress, and diabetes. J Clinnvest 2005;115;1111-1119.
  • 90) Xu H., Barnes G. T., Yang Q. et al:Chronic inflammation in fat plays arucial role in the development of obesity-related insulin resistance. J Clinnvest 2003;112;1821-1830.
  • 91) Tsuchiya K.,Yoshimoto T.,Hirono Y.et al:Angiotensin II induces monocytehemoattractant protein-1 expression via a nuclear factor-kappaB-dependentathway in rat preadipocytes.Am J Physiol Endocrinol Metab 2006;291;771-778.
  • 92) Takahashi K.,Mizuarai S.,Araki H.et al:Adiposity elevates plasma MCP-1evels leading to the increased CD11b-positive monocytes in mice. J Biolhem 2003;278;46654-46660.

第10章 脂肪組織リモデリングの分子機構と医学応用

P.213 掲載の参考文献

  • 1) Xu H., Barnes G. T., Yang Q. et al:Chronic inflammation in fat plays arucial role in the development of obesity-related insulin resistance. J Clinnvest 2003;112;1821-1830.
  • 4) Wellen K. E., Hotamisligil G. S.:Inflammation, stress, and diabetes. J Clinnvest 2005;115;1111-1119.
  • 6) Kanda H., Tateya S., Tamori Y. et al:MCP-1 contributes to macrophagenfiltration into adipose tissue, insulin resistance, and hepatic steatosis inbesity. J Clin Invest 2006;116;1494-1505.
  • 10) Inouye K. E., Shi H., Howard J.K. et al:Absence of CC chemokine ligand 2oes not limit obesity-associated infiltration of macrophages into adiposeissue. Diabetes 2007;56;2242-2250.
  • 11) Nomiyama T.,Perez-Tilve D.,Ogawa D.et al:Osteopontin mediates obesityinduced adipose tissue macrophage infiltration and insulin resistance in mice. Clin Invest 2007;117;2877-2888.
  • 13) Furukawa S., Fujita T., Shimabukuro M. et al:Increased oxidative stress inbesity and its impact on metabolic syndrome. J Clin Invest 2004;114;17521761.
  • 14) Ozcan U.,Cao Q.,Yilmaz E.et al:Endoplasmic reticulum stress links obesity,nsulin action, and type 2 diabetes. Science 2004;306;457-461.
  • 15) Ozcan U., Yilmaz E., Ozcan L. et al:Chemical chaperones reduce ER stressnd restore glucose homeostasis in a mouse model of type 2 diabetes.Science 2006;313;1137-1140.
  • 18) Cinti S.,Mitchell G.,Barbatelli G.et al:Adipocyte death defines macrophageocalization and function in adipose tissue of obese mice and humans.J Lipides 2005;46;2347-2355.
  • 19) Suganami T., Nishida J., Ogawa Y.:A paracrine loop between adipocytes and macrophages aggravates inflammatory changes:role of free fatty acids and tumor necrosis factor α. Arterioscler Thromb Vasc Biol 2005;25;2062-2068.
  • 20) Suganami T., Tanimoto-Koyama K., Nishida J. et al:Role of the Toll-like receptor 4/NF-κB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 2007;27;84-91.
  • 21) Suganami T.,Mieda T.,Itoh M.et al:Attenuation of obesity-induced adiposeissue inflammation in C3H/HeJ mice carrying a Toll-like receptor 4 mutation.iochem Biophys Res Commun 2007;354;45-49.
  • 24) Lee J. Y., Plakidas A., Lee W.H. et al:Differential modulation of Toll-likeeceptors by fatty acids:preferential inhibition by n-3 polyunsaturated fattycids. J Lipid Res 2003;44;479-486.
  • 26) Siscovik D. S., Raghunathan T. E., King I. et al:Dietary intake and cell membrane levels of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. JAMA 1995;274;1363-1367.
  • 27) Burr M.L.,Fehily A.M.,Gilbert J.F.et al:Effects of changes in fat,fish,andibre intakes on death and myocardial reinfarction:diet and reinfarction trialDART). Lancet 1989;2;757-761.
  • 29) Satoh N., Shimatsu A., Kotani K. et al:Purified eicosapentaenoic acideduces small dense LDL, remnant lipoprotein particles, and C-reactiverotein in metabolic syndrome. Diabetes Care 2007;30;144-146.
  • 33) Odegaard J. I., Ricardo-Gonzalez R. R., Goforth M. H. et al:Macrophagespecific PPARg controls alternative activation and improves insulin resistance.ature 2007;447;1116-1120.
  • 34) Lumeng C. N., Bodzin J. L., and Saltiel A. R.:Obesity induces a phenotypicwitch in adipose tissue macrophage polarization.J Clin Invest 2007;117;175184.
  • 35) Bouhlel M. A., Derudas B., Rigamonti E. et al:PPARg activation primesuman monocytes into alternative M2 macrophages with anti-inflammatoryroperties. Cell Metab 2007;6;137-143.

第11章 肥満・メタボリックシンドロームと食品機能

P.235 掲載の参考文献

  • 1) メタボリックシンドローム診断基準検討委員会: メタボリックシンドロームの疾患概念の確立と診断基準の設定. 2005.
  • 2) Lagouge M., Argmann C., Gerhart-Hines Z. et al:Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006;127;1-14.
  • 7) Ford E.S., Mokdad A.H., Giles W.H. et al:The metabolic syndrome andntioxidant concentrations:findings from the Third National Health andutrition Examination Survey. Diabetes 2003;52;2346-2352.
  • 9) Xu H.,Barnes G.T.,Yang Q.et al:Chronic inflammation in fat plays a crucialole in the development of obesity-related insulin resistance. J Clin Invest 2003;112;1821-1830.
  • 10) Chawla A.,Repa J.J.,Evans R.M.et al:Nuclear Receptors and Lipid Physiology:pening the X-Files. Science 2001;294;1866-1870.
  • 11) Lazar M.A.:East meets West:an herbal tea finds a receptor. J Clin Invest 2004;113;23-25.
  • 12) Takahashi N., Kawada T., Goto T. et al:Dual action of isoprenols from herbal medicines on both PPARγ and PPARα in 3T3-L1 adipocytes and HepG2 hepatocytes. FEBS Lett 2002;514;315-322.
  • 13) Takahashi N., Kawada T., Goto T. et al:Abietic acid activates peroxisome proliferator-activated receptor-gamma (PPARγ)in RAW264.7 macrophages and 3T3-L1 adipocytes to regulate gene expression involved in inflammation and lipid metabolism. FEBS Lett 2003;550;190-194.
  • 14) Park J.Y., Kawada T., Han I.S. et al:Capsaicin inhibits the production of tumor necrosis factor alpha by LPS-stimulated murine macrophages, RAW 264.7:a PPARγ ligand-like action as a novel mechanism. FEBS Lett 2004;572;266-270.
  • 15) Goto T., Takahashi N., Kato S. et al:Phytol directly activates peroxisome proliferator-activated receptor alpha (PPARα)and regulates gene expression involved in lipid metabolism in PPARα-expressing HepG2 hepatocytes. Biochem Biophys Res Commun 2005;337;440-445.
  • 16) Kuroyanagi K., Kang M.S., Goto T. et al:Citrus auraptene acts as an agonist for PPARs and enhances adiponectin production and MCP-1 reduction in 3T3-L1 adipocytes. Biochem Biophys Res Commun;2007;in press.
  • 17) Yajima H., Ikeshima E., Shiraki M. et al:Isohumulones, bitter acids derived from hops, activate both peroxisome proliferator-activated receptor α and γ and reduce insulin resistance. J Biol Chem 2004;279;33456-33462.
  • 20) Yu R., Kim C.S., Kwon B.S. et al:Mesenteric adipose tissue-derivedonocyte chemoattractant protein-1 plays a crucial role in adipose tissueacrophage migration and activation in obese mice. Obesity 2006;14;13531362.
  • 23) Hirai S.,Kim Y.I., Goto T. et al:Inhibitory effect of naringenin chalcone onnflammatory changes in the interaction between adipocytes and macrophages.ife Sci 2007;81;1272-1279.
  • 24) Tsuda T., Horio F., Uchida K et al:Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr 2003;133;125-130.
  • 28) 上野有紀: クルクミノイド類. 抗肥満食品・素材の開発と応用展開; 抗肥満のメカニズム-メタボリックシンドロームにおけるバイオマーカーの確立と応用-(大澤俊彦 監修) シーエムシー出版, 2007, p157-164.
  • 29) 津田孝範: 食品因子による脂肪細胞機能の制御の可能性. ジャパンフードサイエンス 2005; 44; 29-36.
  • 32) Park P.H., McMullen M.R., Huang H. et al:Short-term treatment of RAW264.7 macrophages with adiponectin increases tumor necrosis factor-α(TNF-α) expression via ERK1/2 activation and Egr-1 expression:role of TNF-α in adiponectin-stimulated interleukin-10 production. J Biol Chem 2007;282;21695-21703.
  • 34) Unoki H.,Bujo H.,Shibasaki M.et al:Increased matrix metalloproteinase-3RNA expression in visceral fat in mice implanted with culturedreadipocytes. Biochem Biophys Res Commun 2006;350;392-398.

第12章 脂肪細胞制御による肥満・糖尿病治療の可能性とその展望

P.250 掲載の参考文献

  • 1) http://www.cdc.gov/diabetes/pubs/estimates05.html
  • 2) http://www.kenkounippon21.gr.jp/index.html
  • 3) Hausman D.B., DiGirolamo M., Bartness T.J. et al:The biology of whitedipocyte proliferation. Obes Rev 2;239;2001.
  • 6) 杉浦 甫: 肥満についての, 新しい細胞生物学的分類の提唱. 肥満研究 8; 17-22; 2002.
  • 8) Bjorntorp P.,Karlsson M.,Pettersson P.:Expansion of adipose tissue strongapacity at different ages in rats. Metabolism 31;366-373;1982.
  • 10) Bost F., Aouadi M., Caron L. et al:The Extracellular Signal-Regulatedinase Isoform ERK1 Is Specifically Required for In Vitro and In Vivodipogenesis. Diabetes 54;402-411;2005.
  • 11) Bost F., Caron L., Marchetti I. et al:Retinoic acid activation of the ERKathway is required for embryonic stem cell commitment into the adipocyteineage. Biochem J 361;621-627;2002.
  • 12) Loftus T.M., Kuhajda F.P., Lane M.D.:Insulin depletion leads to adiposespecific cell death in obese but not lean mice. Proc Natl Acad Sci USA 95;14168-14172;1998.
  • 13) Della-Fera M.A.,Choi Y.H.,Hartzell D.L.et al:Sensitivity of ob/ob mice toeptin-induced adipose tissue apoptosis. Obes Res 13;1540-1547;2005.
  • 14) Cinti S., Mitchell G., Murano I. et al.:Adipocyte death defines macrophageocalization and function in adipose tissue of obese mice and humans.J Lipides 46;2347-2355;2005.
  • 17) Kubota N.,Terauchi Y.,Miki H.et al:PPAR gamma mediates high-fat dietinduced adipocyte hypertrophy and insulin resistance.Mol Cell 4;597;1999.
  • 18) Fajas L., Landsberg RL., Huss-Garcia Y. et al:E2F regulates adipocyteifferentiation. Dev Cell 3;39-49;2002.
  • 20) Sarruf D.A., Iankova I., Abella A. et al:Cyclin D3 promotes adipogenesishrough activation of peroxisome proliferators-activated receptor gamma.ol Cell Biol 25;9985-9995;2005.
  • 21) Li X., Kim J.W., Gronborg M. et al:Role of cdk2 in the sequential phosphorylation/activation of C/EBPβ during adipocyte differentiation. Proc Natl Acad Sci USA 104;11597-11602;2007.
  • 23) Kanda H., Tateya S., Tamori Y. et al:MCP-1 contributes to macrophagenfiltration into adipose tissue, insulin resistance, and hepatic steatosis inbesity. J Clin Invest 116;1494-1505;2006.

終章 肥満研究の今後の展望とメタボリックシンドローム対策

P.257 掲載の参考文献

  • 1) 厚生労働省健康局: 平成17年国民健康・栄養調査結果の概要. http://www.mhlw.go.jp/houdou/2007/05/h0516-3.html
  • 2) 福原淳範, 下村伊一郎: ビスファチン. Adiposcience 2006; 3; 314-318.
  • 4) 伊達紫, 中里雅光, 寒川賢治: 消化管ホルモンの神経系を介する摂食調節機構. 肥満研究 2007;13;230-237.